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Continuous flow and evidence accumulation models have recently been combined to provide an integrated
account of decision and motor mechanisms engaged in choice reaction time tasks. According to this
account, muscle activation is essentially determined by the evidence accumulation decision variable through
a continuous decision-to-motor transmission of information. However, it remains unclear whether and how
this framework can be extended to situations that impose a time lag between the commitment to a choice and
the expression of that choice through actions. Such situations have been studied using response signal (RS)
decision tasks featuring a short delay between the offset of the stimulus and a signal to respond. The present
work integrates recent developments in decision-making, working memory, and motor control research to
extend models of immediate decision reports to delayed decision reports. We assumed that the evidence
accumulation decision variable transitions to sustained activity after hitting a threshold to achieve the short-
termmaintenance of the selected choice. The level of sustained activity then constitutes the starting point for
a second phase of accumulation, in which subjects sample evidence from the RS to activate the muscles. We
tested predictions from the theory at the behavioral and muscle activation levels in three RS decision tasks
featuring manipulations of stimulus duration, delay duration, and foreknowledge of the stimulus–response
mapping. Muscle activation was measured using electromyography. The theory provided a unified account
of empirical effects.

Public Significance Statement
Goal-directed behavior requires a translation of decisions into actions, and psychological research has
offered sophisticated models of this process. However, their scope is limited to decisions that are
immediately followed by actions, while many real-life situations require a short delay between them. For
example, imagine a child raising one’s hand while waiting for the teacher’s signal to respond, or a
basketball player preparing to shoot a 3-point goal and waiting to receive the ball. The present work
builds on recent neuroscience findings suggesting commonmechanisms for the decision process and the
short-term maintenance of the choice to propose a novel theoretical account of delayed decision reports.
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A growing body of experimental and theoretical work suggests
that decisions and actions can be closely intertwined. In particular, in
situations where decisions lead to immediate actions, behavioral
studies and electrophysiological investigations of the motor system
have revealed a continuous transmission of the evolving decision
variable to the motor structures that prepare and execute the
response (Buc Calderon et al., 2015; Chapman et al., 2010; Coles,
1989; Eriksen et al., 1985; Gold & Shadlen, 2000, 2007; Hanes &
Schall, 1996; Heitz & Schall, 2012; Kinder et al., 2022; Nakayama
et al., 2023; O’Connell & Kelly, 2021; Reppert et al., 2018; Schall,
2019; Servant et al., 2015, 2021; Song & Nakayama, 2009; Thura,
2020; Thura & Cisek, 2014, 2016). These results have provided
the foundation for theoretical models in which decisions and actions
are driven by common mechanisms, through a continuous flow
of information (Calderon et al., 2018; Eriksen & Eriksen, 1979;
McClelland, 1979). Formal characterizations of these mechanisms
have been proposed (Balsdon et al., 2023; Cisek et al., 2009;
Dendauw et al., 2024; Friedman et al., 2013; Lepora & Pezzulo,
2015; Purcell et al., 2010, 2012; Servant et al., 2015, 2019, 2021;
Thura et al., 2012; Verdonck et al., 2021), but extending the models
to situations where decisions are not immediately followed by
actions is not straightforward. Progressing on this issue is important,
because the decoupling of decision and action is a common
occurrence in real life, and greatly contributes to the flexibility of
human behavior. Such decoupling can operate on short (e.g., a child
in class who raises one’s hand while waiting for the teacher’s signal
to respond) or long (e.g., deciding to quit a job, deciding to vote for a
candidate in a presidential election) timescales.
The present work draws upon current scientific knowledge on

the relationship between decision-making, memory, and motor
systems to extend continuous flow models of immediate decision
reports to delayed decision reports. Due to the constraints of
experimental methods and the use of electrophysiology, we limit
our investigations to delays that operate on relatively short
timescales. The remainder of the introduction is structured as
follows. We first introduce current continuous flow models of
immediate decision reports. We then review empirical work on
delayed decision reports, and discuss how continuous flow models
could be extended to these situations, given our current state of
knowledge.We finally derive general predictions from this extended
framework, which will be tested in three experiments.

Continuous Flow Models of Immediate Decision Reports

In experimental psychology, immediate decision reports have
traditionally been studied using tasks in which participants are
instructed to choose between two or more responses based on a
stimulus attribute. We refer to these tasks as free response (FR)
tasks, because the response time (RT) is controlled by the subject,
and is defined as the latency between the onset of the stimulus and
the response. Sequential sampling decision models have been
developed since the 1960s to explain RT distributions and choice
probabilities observed in FR tasks (e.g., LaBerge, 1962; Laming,
1968; Stone, 1960). According to these models, decision-making
builds upon an accumulation of noisy samples of evidence until a
threshold is reached (one threshold for each response; for reviews,
see Forstmann et al., 2016; Ratcliff & Smith, 2004; Ratcliff, Smith,
et al., 2016). The evidence may come from various sources, such as
sensory inputs and memory stores. The average quality of evidence

determines the accumulation rate, with lower rates producing slower
and more error-prone decisions.

More recently, sequential sampling models have received
empirical support from single-unit recordings in behaving monkeys
(for reviews, see Gold & Shadlen, 2007; Hanks & Summerfield,
2017; Schall, 2019). In humans, electroencephalographic (EEG) and
magnetoencephalographic studies have identified two classes of
signals with the same properties as the theoretical accumulation-to-
threshold decision variable (for reviews, see Kelly & O’Connell,
2015; O’Connell & Kelly, 2021). The first class of signals corre-
sponds to the centroparietal positivity and reflects stimulus cate-
gorization. It is fully independent from the motor requirements of
the task and appears even when subjects are instructed to make the
decision mentally (e.g., O’Connell et al., 2012; Twomey et al.,
2015). The second class of signals, maximal over motor areas,
corresponds to classic effector-selective motor preparation activities
such as the lateralized readiness potential (e.g., Gluth et al., 2013;
Kelly & O’Connell, 2013; Lui et al., 2021; Servant et al., 2016) and
the decrease in spectral activity in the μ/β band (e.g., de Lange et al.,
2013; Donner et al., 2009; Kelly et al., 2021; O’Connell et al., 2012;
Rogge et al., 2022; Steinemann et al., 2018; Twomey et al., 2016).
Both signals exhibit a rise-to-threshold morphology, with a rising
slope modulated by the quality of evidence, and a peak amplitude
around the time of the response. Importantly, the two signals largely
evolve in parallel, with the onset of the motor preparation signal
slightly lagging the onset of the stimulus categorization signal
(Kelly & O’Connell, 2013).

To account for these findings, recent extensions of sequential
sampling models distinguish two evidence accumulation processes
(Dendauw et al., 2024; Verdonck et al., 2021). In order to make
the present article as simple and accessible as possible, we will
focus on general conceptual aspects of the models,1 and FR tasks
that require a choice between two manual responses (left and
right). The first evidence accumulation process x(t) is assumed
to perform a decision about the category of the stimulus. It is
modeled as a one-dimensional diffusion process, according to
which evidence for one-stimulus category constitutes evidence
against the other category. If there is no bias toward a specific
category, x(t) starts at 0. Positive evidence favors stimulus cat-
egory A, while negative evidence favors stimulus category B.
Variable x(t) is continuously transmitted to motor preparation
brain areas, but can be corrupted by noise in neural networks
during the transmission process. The motor preparation process y(t)
approximates a particular type of filter, known as the Kalman-Bucy
filter, to optimally recover x(t) from noise. Variable y(t) thus cor-
responds to a smoothed and lagged version of x(t), with the lag arising
from the filter.2 The filter also introduces a slight nonlinearity in
the accumulation rate, but these properties will not be considered
further in the context of the present work, given that they will
not have any meaningful impact on predictions. However, it is
important to recognize that a decrease in the quality of evidence will
produce a reduction in the accumulation rate of both x(t) and y(t).
If there is no bias toward a particular response category, y(t) starts
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1 A full mathematical specification of the models is available in Verdonck
et al. (2021) and Dendauw et al. (2024).

2 Evidence for a filtering mechanism at the motor preparation level
comes from model fits to behavioral and electrophysiological data in FR
tasks (Balsdon et al., 2023; Dendauw et al., 2024; Verdonck et al., 2021).
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at 0, with positive evidence favoring the right-hand response, and
negative evidence favoring the left-hand response.
This extended sequential sampling model framework has been

further refined to account for motor phenomena occurring at the
muscular level, as revealed by surface EMG recordings. Because
EMG is relatively uncommon in experimental psychology com-
pared to EEG and magnetoencephalographic techniques, and
considering our utilization of EMG in the present work, it is
important to provide a comprehensive overview of its principles.
EMG measures myoelectric activity produced by muscles in
response to neural excitation, using two or more electrodes placed
on the skin surface, above the targeted muscle(s). When the EMG
baseline is zero, which is typically achieved by applying a high-pass
filter to the signal (to remove slow drifts unrelated to muscular
activity), muscle activation is reflected by a burst of positive and
negative voltage deflections, operating on a shorter timescale than
RT. To ensure that the EMG signal does not average to zero,
researchers typically consider the (full-wave) rectified EMG signal,
obtained by taking the absolute value of voltages across time points.
The amplitude of a rectified EMG burst reflects global muscle
activation and is highly correlated to force production (for a review,
see Vigotsky et al., 2018).3 On average, it takes the form of a
ramping activity that peaks around the time of the response. When
the quality of evidence decreases, the slope of this ramping activity
also decreases on average, producing a slower mean motor time
(defined as the mean latency between the onset of muscle activation
and the response; Dendauw et al., 2024; Servant et al., 2021). These
properties are reminiscent of the theoretical evidence accumulation
variable.
To account for these findings, Dendauw et al. (2024) hypoth-

esized that the motor preparation variable y(t) is gated prior to
activating muscle fibers. The gate, presumably mediated by the
basal ganglia system and spinal circuits, is modeled as a constant
inhibition applied to y(t). Formally, inputs to left and right muscle
fibers, variables zL(t) and zR(t) respectively, are defined as follows:

�
ZLðtÞ = maxð−yðtÞ − g, 0Þ
ZRðtÞ = maxðyðtÞ − g, 0Þ , (1)

where parameter g corresponds to gating inhibition. Thus, the motor
preparation variable y(t) is transmitted to muscle fibers if and only if
it exceeds a particular level of activation, determined by parameter
g. This gating mechanism saves muscular effort by preventing low
levels of motor preparation from activating muscle fibers and
protects the system against unwanted motor impulses.
The electrical activation of muscle fibers, measured by EMG,

starts when zL(t) or zR(t) > 0. A response (button press) is produced
when muscle activation reaches a threshold level (parameter θresp,
referred to as response threshold), primarily determined by the force
required to respond and muscle properties. A left response is
produced if zL(t) first reaches the response threshold, while a right
response is produced if zR(t) first reaches the response threshold.
Because the rectified EMG signal covaries with zL(t) and zR(t), the
model provides a straightforward explanation of empirical EMG
findings. When the quality of evidence decreases, the accumulation
rate of the motor preparation variable decreases, which produces a
decrease in the muscle activation slope on average. This architecture
has been termed gated cascade diffusion model (GCD) to emphasize
the main processing components (diffusion decision variable,

continuous flow, and gate). A simplified schematic of the model is
provided in Figure 1A. The schematic illustrates the expected
mean of motor preparation and muscle activation trajectories for
two conditions, involving high and low quality of evidence,
respectively.

Besides mean activation dynamics, GCD predicts a particular
muscle phenomenon at the single-trial level. Noisy fluctuations
of the motor preparation variable y(t) can sometimes produce
partial muscle activations that do not lead to a response. This
phenomenon occurs when zL(t) or zR(t) > 0 for a short period
without reaching the response threshold θresp (Figure 1B). The
predicted rate of partial muscle activation in the EMG channel
associated with the response increases as the quality of evidence
decreases, due to the underlying decrease in the signal-to-noise
ratio of the motor preparation variable y(t). This prediction has
been validated (Dendauw et al., 2024; Servant et al., 2021).
Empirical illustrations of partial muscle activations are provided
in Appendix A.

Delayed Decision Reports

Delayed decision reports have been studied in both monkeys
and humans using response signal (RS) decision tasks. RS tasks are
similar to FR tasks, except that subjects are instructed to respond
when a RS, controlled by the experimenter, appears on the screen.
Consequently, the RT is defined as the latency between RS onset
and the response. The main parameters of RS tasks are (a) stimulus
presentation duration, (b) RS latency relative to stimulus onset, (c)
presence of a delay between stimulus offset and RS onset, and (d)
knowledge of the stimulus–response mapping during stimulus
presentation. Because our interest is in delayed decision reports, we
shall focus on studies that used a relatively long RS latency relative
to stimulus onset.

When the stimulus–response mapping is known during stimulus
presentation, single-unit recordings in behaving monkeys as well as
EEG and magnetoencephalographic studies in humans show a
propagation of the evidence accumulation variable in the motor
structures that prepare the response, similar to FR tasks. Importantly,
ramping effector-selective motor preparation signals appear to
plateau during the delay period before the RS (de Lafuente et al.,
2015; de Lange et al., 2013; Donner et al., 2009; Horwitz &
Newsome, 1999; Kiani et al., 2008; Rao et al., 2012; Rogge et al.,
2022; Roitman & Shadlen, 2002; Shadlen & Newsome, 2001;
Twomey et al., 2016). These findings suggest that a representation
of the selected response is maintained at the motor preparation level,
in the form of sustained activity that corresponds to the level of
cumulative evidence. More generally, they suggest that evidence
accumulation and working memory can be underpinned by similar
cortical mechanisms (Harvey et al., 2012; Wang, 2008; Wong &
Wang, 2006).

An important question concerns the mechanism that governs the
transition between evidence accumulation and sustained activity.
One possibility is that subjects accumulate all available evidence. A
behavioral modeling study in humans provided strong evidence
against this assumption (Ratcliff, 2006). Subjects appear to stop
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3 An EMG burst constitutes a precursor to force production. The con-
version of myoelectric activity into muscle force involves a series of elec-
trochemical and mechanical processes that are irrelevant to the present work.
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Figure 1
Illustration of Motor Preparation and Muscle Activation Dynamics From GCD and GCDRS Models

Note. The first row (Panels A–B) illustrates GCD dynamics in a free response decision task involving high (dark green) and low (light green) evidence
quality conditions. The second and third rows (Panels C–F) illustrate GCDRS dynamics in a response signal (RS) variant of the task involving a delay
between stimulus offset and RS onset, and foreknowledge of the stimulus–response mapping. The first column (Panels A, C, and E) shows predicted motor
preparation and muscle activation trajectories averaged across a large number of trials (i.e., the expected value). The second column (Panels B, D, and F)
shows predicted motor preparation and muscle activation trajectories at the single-trial level. The contents of each panel are as follows. (A) According to
GCD, the evidence accumulation variable continuously flows to motor preparation brain areas, and is subjected to gating inhibition (parameter g) before
activating muscle fibers. The response occurs when muscle activation reaches a threshold level of activation (parameter θresp, referred to as response
threshold). The lower accumulation rate for the low evidence quality condition produces an increase in both the mean premotor time (PMT, from stimulus
onset to the onset of muscle activation) and the mean motor time (MT, from the onset of muscle activation to the response). (B) At the single-trial level,
moment-by-moment internal noise produces random fluctuations in the motor preparation trajectory, and variability in the latency at which the response (R)
occurs. GCD predicts a partial muscle activation (PMA) when the motor preparation trajectory temporarily exceeds the level of gating inhibition g, but the
corresponding muscle activation does not reach the response threshold θresp (see light green trajectories). PMA are more likely to occur in the EMG channel
associated with the response than in the opposite channel. Moreover, PMA are more likely to occur in the EMG channel associated with the response when
the quality of evidence is low, due to the decrease in the signal-to-noise ratio of the motor preparation variable. (C) In the RS variant of the task, GCDRS also
assumes that the evidence accumulation variable continuously flows to motor preparation brain areas during stimulus presentation, but the level of gating

(figure continues)
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accumulating evidence when the decision process reaches a
threshold, similar to FR tasks. This study also showed that a perfect
accumulation model (with no leakage in the accumulator memory)
provided a better fit performance than a leaky accumulation variant,
though differences in model selection statistics were small. The
maintenance of the choice in working memory until the RS was not
modeled. Monkeys also seem to use some kind of bounded perfect
accumulation, as late samples of stimulus information have no effect
on performance, unlike early samples (Kiani et al., 2008).
An apparent challenge for the bounded accumulation hypothesis

concerns the modulation of sustained effector-specific motor prepa-
ration activities by the quality of evidence. Specifically, the average
level of sustained activity during the delay period before the RS
decreases as the quality of evidence decreases (de Lafuente et al., 2015;
Kiani et al., 2008; Rao et al., 2012; Roitman& Shadlen, 2002; Shadlen
& Newsome, 2001). The mechanism underlying this effect is unclear.
It could result from a short post-threshold evidence accumulation
period caused by a delay introduced by the (unknown) neural
mechanism that compares activity to the threshold (Mazurek et al.,
2003), or from a threshold that decreases as processing time increases
due to the attentional cost of acquiring new samples of evidence (Cisek
et al., 2009; Ditterich, 2006a, 2006b;Drugowitsch et al., 2012; Thura et
al., 2012). Another possibility is that a proportion of evidence accu-
mulation trajectories do not reach the threshold before transitioning to
sustained activity, due to insufficient evidence in the processing
pipeline. This proportion may increase when the quality of evidence
decreases, especially when stimulus duration (or latency between
stimulus onset and RS onset) is short (Ratcliff, 2006).
A few studies have examined behavioral performance and

brain activity when the stimulus–response mapping is not known
during stimulus presentation and is instead provided by the RS (or
slightly before). As expected, effector-selective motor preparation
activities are silent prior to the delivery of the stimulus–response
mapping (Bennur & Gold, 2011; Gold & Shadlen, 2003; Shushruth
et al., 2022; Twomey et al., 2016). In monkeys, two different
processing strategies have been identified. One single-unit study
showed ramping electrical signals during stimulus presentation
followed by persistent activity that reflected the selected stimulus
category (Bennur & Gold, 2011). Another single-unit study in
monkeys failed to replicate these findings. Monkeys stored samples
of evidence in working memory, and performed the decision only
when the stimulus–response mapping was provided by the RS,
through accumulation of evidence from memory (Shushruth et al.,
2022).4 Their behavioral performance was thus very close to that

observed in FR tasks. The reason for discrepancies in processing
strategy may be related to the training history of the monkeys
(Shushruth et al., 2022). To our knowledge, only one study in
humans has evaluated decision-related activities when the
stimulus–response mapping is provided by the RS (Twomey et al.,
2016). Centroparietal EEG signals showed ramping dynamics
during stimulus presentation, the slope of which scaled with sensory
evidence. This result indicates that subjects categorized the stim-
ulus. Interestingly, centroparietal EEG signals did not plateau
during the delay period before the RS and instead decayed back to
baseline. The brain may have maintained the selected stimulus
category elsewhere or may have used another neural mechanism for
this short-term maintenance (e.g., short-term synaptic plasticity;5

Masse et al., 2020).

Extending GCD to Delayed Decision Reports

Our literature review suggests that GCD can be extended to RS
tasks without major changes in information processing components.
When the stimulus–response mapping is known during stimulus
presentation, one simply needs to assume that (a) gating inhibition is
increased before the RS to prevent muscle activation and (b) the
motor preparation process y(t) plateaus during the delay period,
consistent with neurophysiological studies. This raises the question
of the mechanism that drives the muscles to the response threshold
θresp after the RS. A decrease in gating inhibition is plausible, but
it cannot produce the kind of ramping signals observed at the
muscle activation level. To solve this problem, we first note that
the detection of the RS corresponds to a one-choice RT task,
which has been successfully modeled by a one-boundary evidence
accumulation process (Ratcliff & Van Dongen, 2011; Smith,
1995). In line with this modeling work, we assume that subjects
sample and accumulate evidence from the RS. This simple
mechanism explains both RS detection and muscle activation.
Specifically, the level of sustained activity of y(t) at RS onset
constitutes the starting point for a second phase of evidence
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Figure 1 Note (continued). inhibition g increases to prevent muscle activation. During the delay, the representation of the selected response is maintained
at the motor preparation level, in the form of sustained activity that corresponds to the level of cumulative evidence. When the RS is presented, subjects
sample and accumulate evidence from it to drive muscles to the response threshold θresp. Gating inhibition may decrease to facilitate response production,
but this adjustment does not have any impact on model predictions. If the average level of sustained activity during the delay is not modulated by the quality
of evidence, as illustrated, GCDRS predicts no effect of the quality of evidence onmean PMT (fromRS onset to the onset of muscle activation) andmeanMT
(from the onset of muscle activation to the response). (D) At the single-trial level, the sustained motor preparation activity during the delay is not completely
flat, due to moment-by-moment internal noise. Random fluctuations can cause PMA, as shown by the light and dark green trajectories. The probability of
occurrence of PMA during the delay depends on the separation between the average level of sustained motor preparation activity and gating inhibition.
Consequently, PMA are more likely to occur during the delay in the EMG channel associated with the response than in the opposite channel. If the average
level of sustained activity is not modulated by the quality of evidence, as assumed here, then the rate of PMA in the EMG channel associated with the
response during the delay should not vary between low and high evidence quality conditions. (E) If the average level of sustained motor preparation activity
during the delay decreases as the quality of evidence, as illustrated, then mean PMT should be slower in the low compared to the high evidence quality
condition, but mean MT should not be modulated. At the single-trial level (Panel F), the rate of PMA in the EMG channel associated with the response
during the delay should be lower for the low compared to the high evidence quality condition, due to the larger separation between sustained motor
preparation activity and gating inhibition on average. GCD = gated cascade diffusion model; GCDRS = extension of the gated cascade diffusion model for
response signal tasks. See the online article for the color version of this figure.

4 Due to working memory capacity limitations, monkeys are unlikely to
store the full stream of evidence from the stimulus. Using computer si-
mulations, Shushruth et al. (2022) showed that the accumulation of a few
samples of evidence can provide a reasonable approximation of psycho-
metric functions obtained when integrating the full stream of evidence.

5 The idea behind short-term synaptic plasticity is that synaptic connections
are dynamically modulated in response to neuronal activity, allowing infor-
mation to be stored in short-termmemorywithout the need for sustained activity.
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accumulation, where the evidence is sampled from the RS.6

The sign of the accumulation rate is identical to the sign of the
sustained activity, and its magnitude is determined by properties
of the RS (see Figure 1C and 1E). To avoid confusion, we refer
to the accumulation rate for the first phase (during stimulus
presentation) as parameter v, and to the accumulation rate for the
second phase (after the RS) as parameter w. If the stimulus–
response mapping is delivered by the RS, the motor preparation
variable y(t) remains silent until the presentation of the RS,
consistent with neurophysiological studies. The second phase of
evidence accumulation driven by the RS thus starts at 0, and we
assume that the sign of w is determined by the sign of cumulative
evidence at the stimulus categorization level. We refer to this
extended GCD for RS tasks as GCDRS.
We conducted three experiments to test general predictions from

GCDRS. Each of these experiments used a RS variant of the random
dot motion task. In the original FR variant of this task, subjects are
presented with a field of moving dots, and are instructed to press one
of two buttons (or produce a saccade toward one of two targets) as a
function of the net direction of the dots. Decision difficulty is
typically manipulated by varying motion coherence, defined as the
proportion of dots moving in the target direction, the other dots
moving randomly. The lower the coherence, the higher the difficulty
of the decision. This task allows researchers to study the formation
of decision and motor commands over a relatively long period of
time, as it requires an integration of sensory evidence in time and
space. In addition, manipulations of motion coherence typically
produce larger modulations of mean RT compared to other
perceptual manipulations. These properties make the random dot
motion task particularly appropriate to test continuous flow
models (Dendauw et al., 2024; Donner et al., 2009; Kelly &
O’Connell, 2013; Roitman & Shadlen, 2002; Servant et al., 2021),
and their extension to delayed decision reports in the context of
the present work.
Each RS variant of the random dot motion task incorporated a

short delay (minimum 3 s) between stimulus offset and RS onset.
This delay allowed us to (a) evaluate processing characteristics
associated with the short-term maintenance of information;
(b) better characterize the articulation between decision-making,
memory, andmotor systems; and (c) prevent any strategical attempt
to postpone the treatment of the stimulus (which could occur if the
stimulus is presented until the RS or the response; e.g., Coallier &
Kalaska, 2014; Twomey et al., 2016). In Experiments 1 and 2, the
stimulus–response mapping was known before stimulus presen-
tation. Experiment 1 manipulated the duration of the delay (3 vs.
5 vs. 7 s), and used a constant stimulus duration (2 s). Experiment 2
manipulated stimulus duration (0.3 vs. 1 vs. 2 s), and used a
constant delay (3 s). Experiment 3 was similar to Experiment 1,
except that the stimulus–response mapping was provided by the
RS. GCDRS makes predictions that will be presented in the
introduction section of each experiment. These predictions will be
tested using traditional behavioral measures extended with EMG
measures of muscle activation.

Experiment 1

Experiment 1 was designed to test a first set of behavioral and
EMG predictions from GCDRS in a RS variant of the random dot
motion task in which the stimulus–response mapping was known

before stimulus presentation. In separate blocks of trials, participants
also completed the original FR version of the task that served as a
processing benchmark. They were instructed to press the left (right)
button with their left (right) thumb, if the net direction of dots was
leftward (rightward). The quality of evidence was manipulated by
randomly varying motion coherence across three levels (2 vs. 11 vs.
40%) within blocks of trials. In FR blocks, stimuli were presented
within a virtual circular aperture, and participants were instructed to
respond as quickly and accurately as possible. Stimuli remained on
the screen until the response. In RS blocks, the same stimuli were
presented within a red circle during 2 s. The red circle remained on
the screen during the delay period and its disappearance served as
the RS. The duration of the delay was manipulated in separate
blocks of trials (3 vs. 5 vs. 7 s; Figure 2A). The primary measures
of interest were (a) response accuracy, (b) the rate of partial muscle
activation, (c) the premotor time (PMT), (d) the slope of muscle
activation, and (e) the motor time (MT: latency between the onset
of muscle activation and the response).7 In FR blocks, PMT was
defined as the latency between stimulus onset and the onset of
muscle activation. In RS blocks, PMT was defined as the latency
between RS onset and the onset of muscle activation. In both tasks,
the RT in each trial corresponded to the sum of PMT and MT.

Predictions From GCD in FR Blocks

Predictions from GCD in FR blocks have been derived and
validated in previous work, in the context of a similar random dot
motion task featuring a larger range of motion coherences (Dendauw
et al., 2024; Servant et al., 2021). Specifically, accuracy should
decrease as motion coherence decreases. Moreover, mean PMT,
mean MT, and the rate of partial muscle activation in the EMG
channel associated with the response should increase as motion
coherence decreases. These predictions result from the decrease in
the accumulation rate of the motor preparation process as motion
coherence decreases (Panels A and B of Figure 1). The data from FR
blocks will thus serve as a replication of these findings, as well as a
processing benchmark for RS blocks.

Predictions From GCDRS in RS Blocks

For the sake of clarity, GCDRS predictions are presented below
for each dependent variable separately.

Response Accuracy

The motion coherence manipulation in RS blocks should
modulate the accumulation rate v of the motor preparation process
during stimulus presentation. Response accuracy should thus
decrease as motion coherence decreases. The comparison of
accuracy performance between RS and FR blocks will be
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6 Evidence from the RS may be accumulated by both the stimulus cat-
egorization process x(t) and the motor preparation process y(t) through
continuous flow. Alternatively, evidence from the RS might be directly
accumulated at the motor preparation level through a direct processing route.
These alternative hypotheses will not be further discussed, as they do not
have any impact on model predictions in the context of the present work.

7 In the context of the present work, the expression “slope of muscle
activation” always refers to the slope of muscle activation leading to the
response (not partial muscle activations). Similarly, PMT andMT are always
defined with respect to the onset of muscle activation leading to the response.
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Figure 2
Empirical Design and Results of Experiment 1

Note. (A) Trial structure in FR (left panel) and RS (right panel) blocks. See text for details. (B) Proportion of correct responses, mean RT, mean
PMT, and meanMT for each condition averaged across subjects. Insets provide a zoom on data fromRS blocks. (C)Muscle activation leading to
the response for each condition averaged across subjects. EMG signals are time-locked to the onset of muscle activation, and are normalized with
respect to the peak amplitude (detected for each subject on the response-locked EMG signal averaged across all conditions, in the 150 ms
window before the response). Insets display the average slope of muscle activation for each condition, computed using linear regression in the
100 ms window after muscle activation onset. Shaded areas represent ±1 within-subjects standard error of the mean. FR = free response; RS =
response signal; ITI= intertrial interval; RT= reaction time; PMT= premotor time;MT=motor time; EMG= electromyography. See the online
article for the color version of this figure.
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informative with respect to the amount of evidence used to inform
the choice. For instance, a higher accuracy for RS than FR blocks
would suggest that subjects sampled and accumulated more evi-
dence from the stimulus on average in the former.

Slope of Muscle Activation and Mean MT

Since the activation of the muscle leading to the response in RS
blocks is driven by evidence sampled from the RS, it should not vary
on average as a function of motion coherence. Thus, mean MT and
the slope of muscle activation should not be modulated by motion
coherence, contrary to FR blocks.

Mean PMT

Mean PMT in RS blocks should be much shorter compared to
FR blocks, because it does not incorporate stimulus categorization
and response selection latencies. The predicted effect of motion
coherence on mean PMT in RS blocks is more complex, and de-
pends on the mechanism that governs the transition between the first
phase of evidence accumulation and sustained activity at the motor
preparation level. Based on our literature review, two processing
schemes can be dissociated. If motor preparation accumulation
trajectories on every trial reach the same level of sustained activity,
then the starting point of motor preparation for the second phase of
evidence accumulation should be the same across motion coherence
levels. Consequently, mean PMT should not be modulated by
motion coherence (Figure 1C). On the other hand, if motor prep-
aration accumulation trajectories reach a lower asymptotic level on
average as the quality of evidence decreases, GCDRS predicts an
increase in mean PMT as motion coherence decreases, because the
starting point for the second phase of evidence accumulation is
located father away from the gate on average (Figure 1E).

Rate of Partial Muscle Activation During the Delay

Although GCDRS predicts an increase in gating inhibition during
the delay to prevent muscle activation, noisy fluctuations of the
motor preparation variable at the single-trial level may sometimes
exceed the gate (for illustrations, see Panels D and F of Figure 1).
The probability of occurrence of this phenomenon increases as the
motor preparation variable gets closer to the gate (and vice versa).
Consequently, the rate of partial muscle activation during the delay
should be higher in the EMG channel associated with the selected
response than in the EMG channel associated with the nonselected
response. If motion coherence does not modulate the asymptotic
level of motor preparation during the delay, the rate of partial muscle
activation in the EMG channel associated with the selected response
should not be modulated by motion coherence (Figure 1D).
Alternatively, if a decrease in motion coherence leads to a decrease
in asymptotic motor preparation activity, then this rate should
decrease as motion coherence decreases (Figure 1F).
In its raw form, GCDRS does not predict any effect of the delay

manipulation on performance. Additional processing assumptions
may be necessary, depending on the expected impact of this
manipulation on sustained motor preparation activity and subse-
quent processing of the RS. Our literature review does not show
evidence for a leakage in the accumulator memory, and thus this
factor can be reasonably disregarded. However, the delay

manipulation is likely to induce a different temporal preparation for
the occurrence of the RS. Temporal preparation can modulate
behavioral performance in certain contexts, so it seems necessary to
review the relevant literature and articulate the main findings with
GCDRS. When the time interval between a warning signal and a
stimulus (termed “foreperiod”) is manipulated in separate blocks of
trials, mean RT to the stimulus increases as the foreperiod increases
(Woodrow, 1914). This effect is classically explained by the
accuracy of temporal estimation, which decreases as the foreperiod
increases (Weber’s law). Thus, preparation for the upcoming trial
decreases as the foreperiod increases (Requin et al., 1991).
Temporal preparation effects are known to modulate multiple
information processing components along the sensorimotor hier-
archy. During the foreperiod, temporal preparation is associated
with an increase in cortical excitability as well as an increase in
inhibition at the corticospinal level to prevent premature responding
(Burle et al., 2010). During stimulus presentation, temporal prep-
aration facilitates early (e.g., perception) as well as late (muscle
activation) processing stages (for reviews, see Burle et al., 2010;
Rolke & Ulrich, 2010). For instance, EMG studies have shown that
both mean PMT and mean MT increase as the foreperiod
(manipulated in separate blocks of trials) increases, with the latter
being caused by a decrease in the slope of muscle activation
(Hasbroucq et al., 1995; Tandonnet et al., 2003). These effects are
presumably caused by modulations in the control of attention and
are mostly observed in attention-demanding tasks (Correa et al.,
2006; Rolke, 2008; Seibold et al., 2023). Modulations in attentional
control as a function of the different delays may occur in the present
experiment, but we do not expect them to have a significant impact
on performance for two reasons. First, an increase in the level of
preparation for the selected response during the delay would
increase the risk of premature responding, and would require an
additional increase in gating inhibition. Whether this phenomenon
occurs or not, the distance between the motor preparation variable
and the gate within GCDRS would remain constant on average.
Consequently, the rate of partial muscle activation during the delay
should not vary with its duration. Second, RS processing is not
demanding, so we do not expect modulations in the control of
attention to affect the rate of evidence accumulation in Phase 2.
Consequently, mean PMT, mean MT, and the slope of muscle
activation should not be modulated by the duration of the delay.

Method

Transparency and Openness

In the sections below, we report how we determined our sample
size, all data exclusions, all experimental manipulations, and all
measures in the study. All data, analysis code (written in Python),
and research materials are freely available at https://osf.io/vf95p/.
This study was not preregistered.

Participants

Servant et al. (2021) used a sample size of 18 subjects. Motion
coherence explained 60% of variations of mean MT (η2p = .6) and
40% of variations of muscle activation slope (η2p = .4). An important
prediction of the present work concerns the interaction between task
variant (FR vs. RS) and motion coherence on the slope of muscle
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activation and mean MT. Specifically, a decrease in motion
coherence should decrease the slope and increase mean MT in the
FR variant only. Consequently, we ran a power analysis using the
MorePower 6.0 software (Campbell & Thompson, 2012) to detect a
significant interaction between task variant and coherence with 80%
power at the α = .05 level, given an effect size conservatively set at
η2p = .1. This analysis showed that 22 participants were necessary to
achieve this goal.
Twenty-two subjects (three men, 19 women;Mage= 21.4; range=

20–24; no further demographics were collected aside from gender
and age) participated in Experiment 1 in exchange for a 20 euros gift
card. Participants were students from the University of Franche-
Comté recruited through online advertisement. All participants were
right-handed, had a normal or corrected-to-normal vision, and
no history of motor/psychiatric/neurological disorders. They were
unaware of the purpose of the experiment and gave their written
consent to participate. This study was approved by the ethical
committee for research of the university (Agreement No.
CERUBFC-2022-01-18-002).

Apparatus

The experiment was conducted in a dimly lit room and was run on
a PC runningWindows 10, using the programming language Python
and components of the PsychoPy toolbox v3.2.4 (Peirce et al.,
2019). Stimuli were displayed on a 34.42 × 19.36 cm LCD monitor
(resolution: 1,920 × 1,080; framerate: 60 Hz, distance frommonitor:
75 cm). Responses were transmitted to the computer using two
thermoplastic rubber hand-held buttons connected to a Black Box
Toolkit module designed to ensure millisecond accuracy. The force
required to press each buttonwas approximately 8.83N. This response
system was similar to that used by Servant et al. (2021). To minimize
artifactual motor activity and maximize comfort, subjects’ hands were
palm-down and rested on a supportive cushion placed on their laps.

Stimuli

Random dot stimuli in the FR task variant were similar to those
used by Servant et al. (2021). White dots (0.05° diameter) were
displayed in a virtual 11.78° circular aperture centered on a 26.29° ×
14.79° black field. A white noise algorithm was used to control
motion: From each frame to the next, a percentage p of dots was
randomly selected to move in the signal direction (leftward vs.
rightward), and the remaining dots were randomly relocated.8

Parameter p, referred to as motion coherence, was manipulated
across three levels (2 vs. 11 vs. 40%). Signal dots moved at a speed
of 10.5°/s, and the average number of dots per frame was 71. The
RS variant of the task used the same stimuli, except that the dots
were presented within a red circle (line width: 0.15°).

Procedure

Participants completed 12 blocks of 96 trials. There were three FR
blocks and nine RS blocks. Three RS blocks featured a 3-s delay
between stimulus offset and RS onset (referred to as RS3 blocks),
three RS blocks featured a 5-s delay (RS5), and three RS blocks
featured a 7-s delay (RS7). Blocks were presented in a pseudo-
random order, with three repetitions of a random ordering of the four
block types. Blocks were separated by self-paced breaks. We also

introduced self-paced breaks in the middle of each RS5 and RS7
block to alleviate fatigue, given increased block duration and
attentional demands. Participants were instructed to identify motion
direction (leftward vs. rightward) and communicate their response
by pressing the corresponding left or right button with their left or
right thumb. In FR blocks, they were instructed to respond as
quickly and as accurately as possible upon stimulus presentation. In
RS blocks, they were instructed to respond as quickly and as
accurately as possible upon RS presentation.

In each block, trials were defined by a factorial combination
of motion direction (leftward vs. rightward) and motion coherence
(2 vs. 11 vs. 40%). Each trial type appeared the same number of
times in a random order. Each trial in FR blocks started with the
presentation of the stimulus. The stimulus remained on the screen
until the response or until a 4-s RT deadline. Failure to respond by
then resulted in a “Too slow! Please respond faster” message
displayed for 2 s. The intertrial interval was 1 s. In RS blocks,
each trial started with the presentation of the stimulus within the
red circle. Stimulus duration was fixed at 2 s, and the red circle
remained on the screen during the delay. The disappearance of the
red circle served as the RS. Each response (correct or incorrect)
made after the RS and within the 4-s RT deadline was followed by
the message “ok” displayed in white for 0.5 s. Note that this
message was not a feedback on accuracy; it simply notified the
participant that the response had been recorded (participants were
informed of this). The next trial started after a 0.5-s blank screen.
Premature responses (before the RS) prompted a “Too fast! Please
respond after the disappearance of the red circle” message, which
was displayed for 2 s. If participants failed to respond within the 4-s
RT deadline, the message “Too slow! Please respond faster” was
displayed for 2 s. Both messages were followed by a 1-s blank
screen. The time course of each trial in FR and RS blocks is
illustrated in Figure 2A. Participants first completed two blocks of
18 practice trials (each of the six possible stimuli was presented
three times in a random order) before the experiment to ensure
they understood the task. The first practice block was FR, and
the second practice block was RS3. A feedback on accuracy
(“Correct” vs. “Incorrect”) was provided after each response for
1 s. Practice trials were discarded from analyses.

EMG Recording and Signal Processing

The EMG activity of a group of muscles (the flexor pollicis brevis
in particular, involved in the flexion of the thumb at both carpo-
metacarpal and metacarpophalangeal joints) was recorded using two
active Ag/Cl electrodes fixed 1 cm apart on the skin of the thenar
eminence of each hand. Electrodes were connected to a Biosemi
ActiveTwo Mk2 biopotential measurement system (sampling fre-
quency = 1,024 Hz). After data acquisition, the difference in voltage
between each pair of electrodes was computed. Left and right bipolar
EMG signals were then submitted to a 10-Hz high-pass Butterworth
filter (3rd order) to remove slow drifts not related to EMG activity,
rectified (i.e., we computed the absolute value of each voltage data
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8 This algorithm can be reproduced using the visual.DotStim() function of
the PsychoPy toolbox and the following parameters: signalDots=‘different’,
noiseDots=‘position’, dotLife = −1. Dots going off the edge of the stimulus
were replaced randomly in the stimulus field. There was no limit to the
number of frames that each dot could live for.
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point), and segmented from −0.3 to 13 s relative to stimulus onset.
We used the three-step procedure described in Servant et al. (2021) to
detect EMG onsets, using more conservative parameters to increase
the reliability of EMG onset detection in the presence of background
noise (Appendix B). In a small proportion of trials, the amount of
background noise was too large to detect EMG onsets, and these
trials were discarded from analyses (M = 0.33% of FR trials, range
0%–1.74%; M = 0.32% of RS trials, range 0%–2.43%).

Data Analyses

Trials with anticipations (RTs< 200ms; 0.02% of FR trials, 0.24%
of RS trials), premature responses (1.46% of RS trials), or in which
participants failed to respond within the 4-s RT deadline (0.55% of
FR trials, 0.18% of RS trials) were excluded from analyses. Statistical
analyses were conducted using the JASP software (v.0.16.4). The
data were analyzed using both frequentist and Bayesian repeated-
measures analyses of variance (ANOVAs) with block type (FR vs.
RS3 vs. RS5 vs. RS7) and motion coherence (2 vs. 11 vs. 40%) as
factors. Chronometric analyses were conducted on all trials (correct
and incorrect), though similar findings were obtained when con-
sidering correct trials only. For the frequentist analyses, the signif-
icance level was set to .05. The assumption of sphericity was assessed
using Mauchly’s test, and the Greenhouse–Geisser correction was
applied when sphericity was violated.9 We report a partial η2 statistic
η2p as a measure of effect size. For the Bayesian analyses, we report
inclusionBayes Factors (BFincl) acrossmatchedmodels, which reflect
the evidence for models including a particular effect (H1) compared to
equivalent models without that effect (H0). Interpretations of BFincl
followed standard guidelines in the field (>100: decisive evidence
for H1; 30–100: very strong evidence for H1; 10–30: strong
evidence for H1; 3–10: substantial evidence for H1; 1–3: anecdotal
evidence for H1; 1: no evidence; and vice versa for H0).

Results

The statistical results presented below are summarized in Table C1.

Response Accuracy

The proportion of correct responses in each condition averaged
across subjects is presented in Figure 2B. An ANOVA with block
type (FR vs. RS3 vs. RS5 vs. RS7) and motion coherence (2 vs. 11
vs. 40%) showed an interaction between the two factors, F(3.82,
80.28) = 8.02, p < .001, η2p = .28, BFincl = 1.84 × 105 (decisive
evidence for H1). Response accuracy decreased as motion coherence
decreased in both FR andRS blocks, consistent with predictions from
GCD and GCDRS. Response accuracy was also higher in RS than FR
blocks, particularly in the 11% coherence condition. Subjects thus
sampled and accumulated more evidence from the stimulus on
average in RS than FR blocks. This effect was more pronounced in
the intermediate coherence condition, likely due to floor and ceiling
effects in the 2% and 40% coherence conditions, respectively.
To specifically evaluate the effect of the delay manipulation in

RS blocks, we computed an ANOVA on the proportion of correct
responses in RS blocks using delay (3 vs. 5 vs. 7 s) and motion
coherence (2 vs. 11 vs. 40%) as factors. The delay manipulation did
not modulate response accuracy, F(2, 42) = 1.17, p = .32, BFincl =

0.19 (substantial evidence for H0), and there was no interaction
effect, F(2.79, 58.48) < 1, BFincl = 0.096 (strong evidence for H0).

Slope of Muscle Activation and Mean MT

Mean MT and the slope of muscle activation (estimated using
linear regression in the 100-ms window from the onset of muscle
activation to the peak amplitude) in each condition averaged across
subjects are presented in Figure 2B and 2C, respectively. We first
computed an ANOVA on mean MT with block type (FR vs. RS3 vs.
RS5 vs. RS7) and motion coherence (2 vs. 11 vs. 40%) as factors.
This analysis, which was the main target of our power analysis,
revealed the predicted interaction between the two factors, F(2.57,
54.06) = 18.80, p < .001, η2p = .47, BFincl = 2.29 × 1014 (decisive
evidence for H1). MeanMT increased as motion coherence decreased
in FR blocks only. This conclusion was backed up by an additional
ANOVAonmeanMT inRS blocks with coherence (2 vs. 11 vs. 40%)
and delay (3 vs. 5 vs. 7 s) as factors. The analysis showed no effect of
coherence, F(2, 42) < 1, BFincl = 0.14 (substantial evidence for H0),
and no interaction between the two factors, F(2.87, 60.17) = 1.86,
p = .15, BFincl = 0.54 (anecdotal evidence for H0).

We next performed the same analyses on the more sensitive
slope of muscle activation. The first ANOVA with block type
(FR vs. RS3 vs. RS5 vs. RS7) and motion coherence (2 vs. 11 vs.
40%) showed an interaction between the two factors, F(3.31,
69.57) = 4.63, p = .004, η2p = .18, BFincl = 273 (decisive evidence
for H1). Coherence primarily modulated the slope of muscle
activation in FR blocks, consistent with the analysis performed on
mean MT. However, this effect did not completely disappear in
RS blocks. Consistent with this observation, the second ANOVA
with coherence (2 vs. 11 vs. 40%) and delay (3 vs. 5 vs. 7 s) as
factors showed an effect of motion coherence, F(2, 42) = 8.55, p <
.001, η2p = .29, BFincl = 11.10 (strong evidence for H1), no effect of
delay, F(2, 42)< 1, BFincl= 0.28 (substantial evidence for H0), and
no interaction between the two factors, F(4, 84) < 1, BFincl = 0.09
(strong evidence for H0). Thus, the slope of muscle activation in RS
blocks decreased as motion coherence decreased, contrary to the
prediction of GCDRS, though the magnitude of this effect was very
small, and obviously not sufficient to modulate mean MT.

Mean PMT

The mean PMT in each condition averaged across subjects is
presented in Figure 2B. The ANOVA onmean PMTwith block type
(FR vs. RS3 vs. RS5 vs. RS7) and motion coherence (2 vs. 11 vs.
40%) as factors showed an interaction, F(1.48, 31.06) = 53.74, p <
.001, η2p = .72, BFincl = 2.54 × 1034 (decisive evidence for H1).
Mean PMTwas 586ms faster in RS than FR blocks, and the effect of
motion coherence was strongly reduced in the former. We next
computed an ANOVA onmean PMT in RS blocks using delay (3 vs.
5 vs. 7 s) and motion coherence (2 vs. 11 vs. 40%) as factors. Mean
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9 A Bayesian repeated-measures ANOVA makes the same assumptions
as a frequentist repeated-measures ANOVA. Violations of the sphericity
assumption in the latter are known to substantially increase the Type I error
rate. However, we do not know any procedure to correct for sphericity
violations when conducting a Bayesian ANOVA. Consequently, BFincl must
be interpreted with caution when a violation of the sphericity assumption is
apparent in the frequentist analyses (indicated by corrected degrees of
freedom, which are decimal numbers).
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PMT increased as motion coherence decreased, F(2, 42)= 6.06, p =
.005, η2p = .22, BFincl = 5.71 (substantial evidence for H1), though
the amplitude of this effect was small (22 ms). The delay manip-
ulation did not modulate mean PMT, F(1.55, 32.46)= 1.40, p = .26,
BFincl = 0.35 (anecdotal evidence for H0), and there was no
interaction effect, F(4, 84) = 1.66, p = .17, BFincl = 0.36 (anecdotal
evidence for H0).

Rate of Partial Muscle Activation

The rate of partial muscle activation for each condition and EMG
channel averaged across subjects is shown in Figure 3A. We first
focused on the rate of partial muscle activation in the EMG channel
associated with the response in FR blocks. An ANOVAwith motion
coherence as a factor showed that the rate increased as motion
coherence decreased, F(1.58, 33.21) = 36.50, p < .001, η2p = .64,
BFincl = 1.45 × 107 (decisive evidence for H1), consistent with
GCD.We next analyzed the rate of partial muscle activation during
the delay in RS blocks. An ANOVA with EMG channel (same as
response vs. opposite) as a factor showed a higher rate of partial
muscle activation in the channel associated with the response than
in the opposite channel, F(1, 21) = 13, p = .002, η2p = .38, BFincl =
28.11 (strong evidence for H1). This important finding is consistent
with the hypothesis—core to GCDRS—that a representation of the
selected response is maintained in the form of sustained activity at
the motor preparation level during the delay. We finally focused on
the rate of partial muscle activation in the EMG channel associated
with the response during the delay and computed an ANOVA with
delay (3 vs. 5 vs. 7 s) and motion coherence (2 vs. 11 vs. 40%) as
factors. Main effects of coherence and delay were not significant,
F(1.47, 30.95) = 1.77, p = .19, BFincl = 0.35 (anecdotal evidence
for H0) and F(2, 42) = 1.80, p = .18, BFincl = 0.53 (anecdotal
evidence for H0), respectively, and the two factors did not
interact, F(4, 84) = 1.09, p = .37, BFincl = 0.13 (substantial
evidence for H0).

Discussion

Empirical findings obtained in the FR variant of the random dot
motion task from Experiment 1 fully replicate those reported by
Servant et al. (2021), and provide additional evidence for the GCD
model framework. Empirical findings obtained in the RS variant are
globally in line with GCDRS. Specifically, mean PMT was 586 ms
faster in RS than FR blocks, consistent with the hypothesis that
subjects maintained a representation of the selected response at the
motor preparation level during the delay period. Additional evidence
for this assumption comes from the analysis of the partial muscle
activation rate during the delay, which was higher in the EMG
channel associated with the response than in the opposite channel.
Mean MT in RS blocks was not modulated by motion coherence,

consistent with the hypothesis that the additional impulse necessary to
overcome gating inhibition and activate muscles after the RS is
predominantly driven by evidence sampled from theRS.However, the
more sensitive analysis of the slope of muscle activation in RS blocks
showed a reliable effect of motion coherence, with smaller slopes as
motion coherence decreased. The size of this modulation was much
smaller compared to that observed in FR blocks. Within GCDRS, this
unexpected finding suggests that the rate of evidence accumulation in
Phase 2 (parameter w) slightly decreases as motion coherence

decreases. Parameter w thus appears to be determined by two sources
of evidence: evidence sampled from the RS and—to a much lesser
extent—evidence from the motion stimulus retrieved from memory.

Mean PMT in RS blocks increased as motion coherence decreased,
though the amplitude of this effect was small (22ms). Themodulation
of parameter w mentioned above might have contributed to this
finding. Another (not mutually exclusive) explanation concerns the
processing scheme described in Figure 1E: A decrease in motion
coherencemight have decreased the average level of sustained motor
preparation activity during the delay, thus increasing mean PMT.
The lack of modulation of the partial muscle activation rate by
motion coherence in the EMG channel associated with the
response speaks against this hypothesis, as it suggests a constant
level of sustained activity across coherence levels. However, this
null effect should be interpreted with caution, because the evidence
for H0 was anecdotal. Moreover, the high level of gating inhibition
and noise in the detection of partial muscle activations may have
obscured subtle effects of coherence on sustained activity.

Although our analyses of partial muscle activations focused on
the delay period in RS blocks for parsimony, the data in the two
other periods (from stimulus onset to stimulus offset and from RS
onset to the response), shown in Figure 3A, are also informative with
respect to latent processing mechanisms. The rate of partial muscle
activation in the EMG channel associated with the response clearly
increased over the three periods. This phenomenon is fully con-
sistent with GCDRS: Gating inhibition is assumed to be at a similar
level during stimulus presentation and the delay, but the motor
preparation variable is at a lower level on average during stimulus
presentation. After the RS, the motor preparation variable increases
again (and gating inhibition possibly decreases). Thus, the prob-
ability of the motor preparation variable to overcome gating
inhibition due to noise at the single-trial level increases over the
three periods, consistent with observed data.

Finally, the manipulation of delay in RS blocks did not
affect performance, consistent with our hypothesis. Although the
evidence for this conclusionwas often anecdotal, the EMGdata did not
show the classic markers of temporal preparation (Hasbroucq et al.,
1995; Tandonnet et al., 2003). Therefore, a modulation of the memory
delay in the context of the present experiment does not appear to
require any additional processing assumption within GCDRS.

Experiment 2

Experiment 2 was designed to test a second set of predictions
from GCDRS, when the duration of stimulus presentation is
manipulated. Experiment 2 was thus similar to RS blocks from
Experiment 1 except that (a) stimulus presentation duration was
manipulated across three levels (0.3 vs. 1 vs. 2 s) within each block
and (b) the delay between stimulus offset and RS onset was fixed
at 3 s. No FR blocks were incorporated.

Predictions

The effect of the stimulus duration manipulation on the behav-
ioral and EMG performance measures depends on its impact on
the average level of sustained motor preparation activity during the
delay. If evidence accumulation trajectories in Phase 1 reach the
same threshold level before transitioning to sustained activity,
regardless of stimulus duration, then the manipulation should not
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have any effect on response accuracy, rate of partial muscle acti-
vation in the EMG channel associated with the response during the
delay, and mean PMT. Conversely, if the average level of sustained
motor preparation activity decreases with stimulus duration,

possibly due to an increase in the proportion of evidence accu-
mulation trajectories in Phase 1 that do not reach the threshold
before transitioning to sustained activity, the rate of partial muscle
activation in the EMG channel associated with the response
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Figure 3
Rate of PMA for Each Condition Averaged Across Subjects in Experiment 1 (Panel A), Experiment 2 (Panel B), and Experiment 3
(Panel C)

Note. PMA = partial muscle activation; FR = free response; RS = response signal; EMG = electromyography. See the online article for the color version of
this figure.
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during the delay should decrease. Mean PMT should increase,
because the starting point for the second phase of evidence
accumulation is located father away from the gate on average.
Finally, accuracy should decrease, because decisions based on
nonterminated processes are less accurate than those based on
terminated processes (Ratcliff, 2006). This modulation of accu-
racy may be most apparent in the intermediate (11%) coherence
condition, due to potential floor and ceiling effects in the 2% and
40% coherence conditions, respectively. Any significant devia-
tion from either set of predictions would call into question the
architecture of the model.

Method

Participants

Twenty-two subjects took part in Experiment 2 (three men, 19
women; Mage = 21.04, range = 20–23; no further demographics
were collected aside from gender and age) in exchange for a 20 euros
gift card. None of the participants had taken part in Experiment 1.
Participants were students from the University of Franche-Comté
recruited through online advertisement. Criteria for inclusion in the
study were similar to those used in Experiment 1. Participants gave
written consent to participate. This study was approved by the
ethical committee for research of the university (Agreement No.
CERUBFC-2022-01-18-002).

Apparatus

The apparatus was identical to Experiment 1.

Stimuli

Stimuli were identical to Experiment 1.

Procedure

Participants completed 10 blocks of 90 trials, with self-paced
breaks between blocks. Blocks were similar to RS blocks in
Experiment 1, except that (a) the delay between the offset of the
stimulus and the onset of the RS was fixed at 3 s, and (b) stimulus
presentation duration was manipulated within each block. Each trial
was thus defined by a factorial combination of motion direction
(leftward vs. rightward), motion coherence (2 vs. 11 vs. 40%), and
stimulus duration (0.3 vs. 1 vs. 2 s). Each trial type appeared the
same number of times in a random order. The time course of each
trial is illustrated in Figure 4A. Participants first completed a block
of 18 practice trials (each stimulus type was presented once in a
random order) before the experiment to ensure they understood the
task. Practice trials were discarded from analyses.

EMG Recording and Signal Processing

EMG recording and signal processing were identical to
Experiment 1 with one exception: signals were segmented from
−0.3 s to 9 s relative to stimulus onset. The percentage of trials in
which EMG onsets could not be detected due to a high level of
background noise was small (M = 0.56%, range 0%–2.63%).

Data Analyses

Trials with anticipations (RTs < 200 ms; 0.39%), premature
responses (0.04%), or in which participants failed to respond within
the 4-s RT deadline (0.3%) were excluded from analyses. The data
were analyzed using both frequentist and Bayesian repeated-
measures ANOVAs, similar to Experiment 1.

Results

The statistical results presented below are summarized in Table C2.

Response Accuracy

The proportion of correct responses in each condition averaged
across subjects is shown in Figure 4B. An ANOVA with motion
coherence (2 vs. 11 vs. 40%) and stimulus duration (0.3 vs. 1 vs. 2 s)
showed an interaction between the two factors,F(3.72, 78.05)= 3.90,
p = .006, η2p = .16, BFincl = 8.83 (strong evidence for H1). Accuracy
decreased as motion coherence decreased. Accuracy was also lower
in the 0.3 s compared to 1 s and 2 s stimulus duration conditions, and
this effect was apparent in the 11% coherence condition only. Note,
however, that accuracy did not differ between 1 s and 2 s stimulus
duration conditions at the 11% coherence level (post hoc pairwise
comparison corrected with Holm’s procedure: p = 1), possibly due to
a ceiling effect.

Slope of Muscle Activation and Mean MT

Mean MT and the slope of muscle activation (estimated using
linear regression in the 100-ms window from the onset of muscle
activation to the peak amplitude) in each condition averaged across
subjects are presented in Figure 4B and 4C, respectively. AnANOVA
computed on meanMTwith motion coherence (2 vs. 11 vs. 40%) and
stimulus duration (0.3 vs. 1 vs. 2 s) as factors showed no effect of
motion coherence, F(1.48, 31.16) = 2.57, p = .11, though the Bayes
factor could not distinguish between H0 and H1 (BFincl = 1.02). The
effect of stimulus duration and the interaction between the two factors
were not significant, F(2, 42) < 1, BFincl = 0.15 (substantial evidence
for H0) and F(4, 84) < 1, BFincl = 0.39 (anecdotal evidence for H0).

We next performed the same analysis on the slope of muscle
activation. The ANOVA showed a reliable effect of coherence,
F(1.52, 31.88) = 5.35, p = .02, η2p = .20, BFincl = 5.17 (substantial
evidence for H1). The slope decreased as motion coherence
decreased, though the amplitude of this effect was small, similar to
Experiment 1. Neither the effect of stimulus duration nor the
interaction between the two factors were significant, F(2, 42) < 1,
BFincl = 0.15 (substantial evidence for H0) and F(4, 84) = 1.65, p =
.17, BFincl = 0.39 (anecdotal evidence for H0) respectively.

Mean PMT

The mean PMT in each condition averaged across subjects is
presented in Figure 4B. The ANOVA on mean PMT with motion
coherence (2 vs. 11 vs. 40%) and stimulus duration (0.3 vs. 1 vs. 2 s)
as factors showed an effect of coherence, F(1.16, 24.32) = 6.10, p =
.02, η2p = .23, BFincl = 10.06 (very strong evidence for H1), an effect
of stimulus duration, F(2, 42) = 36.94, p < .001, η2p = .64, BFincl =
1.50 × 107 (decisive evidence for H1), and no interaction between
the two factors, F(4, 84) < 1, BFincl = 0.05 (strong evidence for H0).

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

DELAYED DECISION REPORTS 13



T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 4
Empirical Design and Results of Experiment 2

Note. (A) Structure of a trial, see text for details. (B) Proportion of correct responses, mean RT, mean PMT, and mean MT for each condition averaged
across subjects. (C) Muscle activation leading to the response for each condition averaged across subjects. EMG signals are time-locked to the onset of
muscle activation and are normalized with respect to the peak amplitude (detected for each subject on the response-locked EMG signal averaged across all
conditions, in the 150 ms window before the response). Insets display the average slope of muscle activation for each condition, computed using linear
regression in the 100 ms window after muscle activation onset. Shaded areas represent ±1 within-subjects standard error of the mean. RS = response
signal; ITI = intertrial interval; RT = reaction time; PMT = premotor time; MT = motor time; EMG = electromyography. See the online article for the
color version of this figure.
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Mean PMT increased as motion coherence and stimulus duration
decreased.

Rate of Partial Muscle Activation

The rate of partial muscle activation for each condition and EMG
channel averaged across subjects is shown in Figure 3B. We first
computed an ANOVA on this rate with EMG channel (same as
response vs. opposite) as a factor. This analysis showed a higher
rate of partial muscle activation in the channel associated with
the response than in the opposite channel, F(1, 21) = 14.89, p <
.001, η2p = .42, BFincl = 156 (decisive evidence for H1). We next
focused on the rate of partial muscle activation in the channel
associated with the response, and computed an ANOVA with
motion coherence (2 vs. 11 vs. 40%) and stimulus duration (0.3 vs. 1
vs. 2 s) as factors. This analysis showed main effects of motion
coherence and stimulus duration,F(1.19, 25.08)= 5.87, p= .02, η2p =
.22, BFincl = 8.67 (substantial evidence for H1) and F(1.22, 25.71) =
13.92, p < .001, η2p = .40, BFincl = 910 (decisive evidence for H1),
respectively. The rate of partial muscle activation in the channel
associated with the response decreased as motion coherence and
stimulus duration decreased. The interaction between the two factors
was not significant, F(1.86, 39.04) = 2.25, p = .12, BFincl = 0.70
(anecdotal evidence for H0).

Discussion

The manipulation of stimulus duration had several effects on
performance. First, decreasing stimulus duration to 0.3-s decreased
response accuracy in the intermediate (11%) motion coherence
condition. Second, the rate of partial muscle activation in the EMG
channel associated with the response during the delay decreased as
stimulus duration decreased. Finally, mean PMT increased as
stimulus duration decreased. These results are consistent with GCD

RS, and suggest that the average level of sustained motor preparation
activity during the delay decreases as stimulus duration decreases.
Similar to Experiment 1, the slope of muscle activation decreased

as motion coherence decreased, and the amplitude of this effect was
too small to produce a reliable modulation of mean MT. These
findings provide additional evidence for the hypothesis that the rate
of evidence accumulation in Phase 2 within GCDRS (parameterw) is
determined by two sources of evidence: evidence sampled from
the RS and—to a much lesser extent—evidence from the motion
stimulus retrieved from memory. The motion coherence manip-
ulation also modulated mean PMT. Specifically, mean PMT
increased as coherence decreased, and the amplitude of this
modulation was three times larger (66 ms) than that observed in
Experiment 1 (22 ms). The modulation of parameter w could have
contributed to this effect, but the analysis of the partial muscle
activation rate in the EMG channel associated with the response
indicates an additional cause. We found that this rate decreased as
motion coherence decreased, suggesting that the average level of
sustained motor preparation activity during the delay decreased as
coherence decreased, thus increasing mean PMT.10

Experiment 3

Experiment 3 was designed to test a third set of predictions from
GCDRS, when the stimulus–response mapping is not known during

stimulus presentation, but is instead delivered by the RS.
Experiment 3 was similar to Experiment 1, but comprised two
important differences. First, motion direction was either upward or
downward (coherence levels were identical to the previous ex-
periments). This feature was introduced to avoid a potential conflict
between motion direction and response side. Second, the RS was
either the letter M or S. Half of the subjects were instructed to
associate upward and downward motion directions with left and
right responses, respectively, if the RS wasM (and vice versa for the
letter S). The rule was reversed for the other half of subjects. FR
blocks alternated with RS blocks (similar to Experiment 1) to
ensure that the effects observed using leftward/rightward motion
directions and left/right responses replicate when using upward/
downward motion directions and left/right responses. The
stimulus–response mapping for FR blocks was provided at the
beginning of the experiment and alternated between participants.

Predictions

In line with empirical results reported by Twomey et al. (2016)
in humans (see the general introduction section), we assume the
following processing scheme in RS blocks. When the stimulus is
presented, subjects perform a decision about its category (upward vs.
downward), and store the representation of the chosen category
in working memory during the delay. When the RS is presented,
subjects combine and accumulate evidence from both the RS letter
and the stimulus category representation to drive the muscles to
the response threshold. Note that the number of processing steps
involved in this activation function is greater than the simple scheme
proposed for the previous experiments. Specifically, subjects must
retrieve the stimulus–response mapping associated with the RS letter
from memory and translate the stimulus category into a response
accordingly. Consequently, mean PMT in RS blocks should be
slower compared to Experiments 1 and 2, and the rate of partial
muscle activation in the EMG channel associated with the response
should be higher than in the opposite channel only after the RS.
Based on findings from the previous experiments, we further
assume that subjects incorporate a few samples of motion evidence
retrieved from memory during the second phase of accumulation,
so parameter w should slightly decrease as motion coherence
decreases. This modulation may not be large enough to affect mean
PMT and mean MT, but it should be detectable on the slope of
muscle activation.

Finally, Experiment 3 incorporated the same delay manipulation as
Experiment 1 in RS blocks (3 vs. 5 vs. 7 s, manipulated in separate
blocks of trials). SinceRSprocessing is considerablymore challenging
compared to Experiment 1, the decrease in attentional resources
allocated to the RS as the delay increases should decrease the rate of
evidence accumulation in Phase 2 within GCDRS. Consequently, we
predict an increase in mean PMT and meanMT as the delay increases,
as well as a decrease in the slope of muscle activation.
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10 Note that the partial muscle activation data over the three periods
(stimulus presentation, delay, and RS) replicate findings from Experiment 1.
Specifically, the rate of partial muscle activation in the EMG channel
associated with the response increased over the three periods, consistent with
GCDRS (see the Discussion section of Experiment 1).
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Method

Participants

The sample size was increased to 24 subjects to accommodate our
counterbalancing scheme (see below). Twenty-four subjects thus
took part in Experiment 3 (three men, 21 women; Mage = 21.04,
range = 20–23; no further demographics were collected aside from
gender and age) in exchange for a 20 euros gift card. None of the
participants had taken part in Experiments 1 and 2. Participants
were students from the University of Franche-Comté recruited
through online advertisement. Criteria for inclusion in the study
were similar to those used in the previous experiments. Participants
gave written consent to participate. This study was approved by the
ethical committee for research of the university (Agreement No.
CERUBFC-2022-01-18-002).

Apparatus

The apparatus was identical to Experiments 1 and 2.

Stimuli

Stimuli in FR and RS blocks were identical to those used in
FR and RS blocks in Experiment 1, except that motion direction was
either upward or downward. In addition, the RS was either the
letter M or S (font: Consolas; 0.31° × 0.38°), presented at the center
of the screen.

Procedure

Participants completed 12 blocks of 96 trials (three FR blocks,
three RS3 blocks, three RS5 blocks, and three RS7 blocks). The
number of trials per condition was thus identical to Experiment 1.
We introduced self-paced breaks between blocks and in the middle
of each RS5 and RS7 block to alleviate fatigue. Participants were
instructed to identify motion direction (upward vs. downward) and
communicate their response by pressing the corresponding button
with their left or right thumb (Figure 5A). In FR blocks, half of the
participants were instructed to press the left button if motion
direction was upward and the right button if motion direction was
downward. This mapping was reversed for the other half. With the
exception of motion direction, the internal structure of each FR
block was identical to Experiment 1. In RS blocks, half of the
subjects were instructed to associate upward and downward motion
directions with left and right responses, respectively, if the RS was
the letter M (and vice versa if the RS was the letter S). The rule was
reversed for the other half of subjects. In each RS block, trials were
defined by a factorial combination of motion direction (upward vs.
downward), motion coherence (2 vs. 11 vs. 40%), and RS (M vs. S).
Each trial type appeared the same number of times in a random
order. Other than that, the internal structure of RS blocks was
identical to RS blocks in Experiment 1. The factorial combination of
the stimulus–response mapping in FR blocks and the stimulus–
response mapping in RS blocks resulted in four different combi-
nations that were repeated six times (hence the 24 subjects). For each
subject, FR and RS blocks were pseudorandomized using the same
scheme as in Experiment 1. Participants first completed two blocks
of practice trials to ensure they understood the task. The first block
was FR and comprised 18 trials (each of the six stimulus types

presented three times in a random order). The second block was RS3
and comprised 36 trials (each of the six stimulus types presented
three times with each RS letter).

EMG Recording and Signal Processing

EMG recording and signal processing were identical to
Experiment 1. The percentage of trials in which the EMG onset of
the response could not be detected, due to a high level of noise was
small (M = 0.32%, range 0%–1.57%).

Data Analyses

Trials with anticipations (RTs < 200 ms; 0.01%), premature
responses (0.2%), or in which participants failed to respond within
the 4-s RT deadline (0.3%) were excluded from analyses. The
data were analyzed with both frequentist and Bayesian repeated-
measures ANOVAs, similar to previous experiments.

Results

The statistical results presented below are summarized in
Table C3.

Response Accuracy

The proportion of correct responses in each condition averaged
across subjects is presented in Figure 5B. An ANOVA with block
type (FR vs. RS3 vs. RS5 vs. RS7) and motion coherence (2 vs. 11
vs. 40%) showed main effects of coherence and block type, F(1.57,
36.17) = 434.04, p < .001, η2p = .95, BFincl = 4.52 × 1027 (decisive
evidence for H1) andF(1.56, 35.98)= 3.90, p= .04, η2p = .15, BFincl=
1.56 (anecdotal evidence for H1), respectively. Response accuracy
decreased as coherence decreased and was slightly higher for RS than
FR blocks. Although the amplitude of the block type effect was
numerically larger in the 11% coherence condition, the interaction
between the two factors was not significant,F(3.19, 73.47)= 1.73, p=
.17, BFincl = 0.36 (anecdotal evidence for H0).

To specifically evaluate the effect of the delay manipulation in RS
blocks, we computed an additional ANOVA on the proportion of
correct responses in RS blocks with delay (3 vs. 5 vs. 7 s) andmotion
coherence (2 vs. 11 vs. 40%) as factors. The delay manipulation did
not modulate response accuracy, F(2, 46) < 1, BFincl = 0.04 (strong
evidence for H0), and there was no interaction effect, F(2.80,
64.50) = 1, p = .40, BFincl = 0.015 (decisive evidence for H0).

Slope of Muscle Activation and Mean MT

Mean MT and the slope of muscle activation (estimated using
linear regression in the 70 ms window from the onset of muscle
activation to the peak amplitude) in each condition averaged across
subjects are presented in Figure 5B and 5C, respectively. An
ANOVA onmeanMTwith block type (FR vs. RS3 vs. RS5 vs. RS7)
and motion coherence (2 vs. 11 vs. 40%) showed an interaction
between the two factors, F(2.74, 62.96) = 9.35, p < .001, η2p = .29,
BFincl= 3.94× 106 (decisive evidence for H1).MeanMT increased as
motion coherence decreased, and the amplitude of this effect was
larger in FR than RS blocks. A second ANOVA on mean MT data
from RS blocks with coherence (2 vs. 11 vs. 40%) and delay (3 vs. 5
vs. 7 s) as factors showed reliable main effects of coherence and
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Figure 5
Empirical Design and Results of Experiment 3

Note. (A) Trial structure in FR (left panel) and RS (right panel) blocks. See text for details. (B) Proportion of correct responses, mean RT, mean
PMT, andmeanMT for each condition averaged across subjects. Insets provide a zoom on data fromRS blocks. (C)Muscle activation leading to
the response for each condition averaged across subjects. EMG signals are time-locked to the onset of muscle activation and are normalized with
respect to the peak amplitude (detected for each subject on the response-locked EMG signal averaged across all conditions, in the 150mswindow
before the response). Insets display the average slope of muscle activation for each condition, computed using linear regression in the 70 ms
window after muscle activation onset. Shaded areas represent ±1 within-subjects standard error of the mean. FR= free response; RS = response
signal; ITI = intertrial interval; RT = reaction time; PMT = premotor time; MT =motor time; EMG = electromyography. See the online article
for the color version of this figure.
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delay, F(2, 46) = 11.44, p < .001, η2p = .33, BFincl = 135 (decisive
evidence for H1) and F(2, 46) = 8.98, p < .001, η2p = .28, BFincl = 55
(very strong evidence for H1), respectively, but no interaction
between the two factors, F(2.67, 61.51) < 1, BFincl = 0.06 (strong
evidence for H0). Mean MT increased as motion coherence
decreased, and increased as the delay increased.
We next computed an ANOVA on the slope data with block type

(FR vs. RS3 vs. RS5 vs. RS7) and motion coherence (2 vs. 11 vs.
40%) as factors. This analysis showed an interaction between the
two factors, F(6, 138)= 7.36, p< .001, η2p = .24, BFincl= 8.91× 104

(decisive evidence for H1). The slope of muscle activation decreased
as coherence decreased, and the amplitude of this effect was larger in
FR than RS blocks. An additional ANOVA on the slope data from
RS blocks with coherence (2 vs. 11 vs. 40%) and delay (3 vs. 5 vs. 7 s)
as factors showed reliable main effects of coherence and delay,
F(2, 46)= 13.83, p< .001, η2p = .38, BFincl= 145 (decisive evidence
for H1) and F(1.56, 35.88) = 8.72, p = .002, η2p = .27, BFincl = 57
(very strong evidence for H1), respectively, but no interaction
between the two factors, F(4, 92)< 1, BFincl= 0.05 (strong evidence
for H0). The slope of muscle activation decreased as motion
coherence decreased. It also decreased as the delay increased.

Mean PMT

The mean PMT in each condition averaged across subjects is
presented in Figure 5B. An ANOVA on mean PMT with block type
(FR vs. RS3 vs. RS5 vs. RS7) and motion coherence (2 vs. 11 vs.
40%) revealed an interaction between the two factors, F(1.48,
33.93) = 39.41, p < .001, η2p = .63, BFincl = 4.34 × 1026 (decisive
evidence for H1). Mean PMT increased as motion coherence
decreased in FR blocks only. This was confirmed by a second
ANOVA computed onmean PMT in RS blocks with coherence (2 vs.
11 vs. 40%) and delay (3 vs. 5 vs. 7 s) as factors. The main effect of
coherence was not significant, F(1.34, 30.82) < 1, BFincl = 0.13
(substantial evidence for H0), and there was no interaction between
coherence and delay, F(4, 92) = 1.55, p = .19, BFincl = 0.26
(substantial evidence for H0). The effect of delay was significant,
F(2, 46)= 7.99, p= .001, η2p = .26, BFincl= 37 (very strong evidence
for H1), reflecting a faster mean PMT in the 3 s compared to the 5 s
and 7 s delay conditions.

Rate of Partial Muscle Activation

The rate of partial muscle activation for each condition and EMG
channel averaged across subjects is shown in Figure 3C. We first
analyzed the rate of partial muscle activation in the EMG channel
associated with the response in FR blocks. An ANOVAwith motion
coherence as a factor showed that the rate increased as motion
coherence decreased, F(1.43, 32.78) = 21.89, p < .001, η2p = .35,
BFincl = 5.98 × 104 (decisive evidence for H1). We next focused
on the rate of partial muscle activation in RS blocks. An ANOVA
on this rate with EMG channel (same as response vs. opposite)
and period (stimulus presentation vs. delay vs. post-RS) showed a
significant interaction between the two factors, F(1.04, 23.82) =
23.54, p < .001, η2p = .51, BFincl = 1.75 × 106 (decisive evidence
for H1). Analyses of simple effects for the channel factor showed a
significant effect after the RS only (stimulus presentation: p = .97,
BFincl = 0.28 [substantial evidence for H0]; delay: p = .55, BFincl =
0.33 [substantial evidence for H0]; RS: p < .001, BFincl = 269

[decisive evidence for H1]), reflecting a higher rate of partial muscle
activation in the channel associated with the response compared to
the opposite channel, consistent with our hypothesis.

Discussion

Empirical results in FR blocks replicate those observed in
Experiment 1. Mean PMT and mean MT increased as motion
coherence decreased, the latter being caused by a decrease in the slope
ofmuscle activation.Moreover, the rate of partial muscle activation in
the EMG channel associatedwith the response increased as coherence
decreased. These findings demonstrate that the effects observed using
leftward/rightward motion directions and left/right responses repli-
cate when using upward/downward motion directions and left/right
responses, consistent with GCD.

The data from RS blocks are generally consistent with our
hypotheses. The rate of partial muscle activation was higher in the
EMG channel associated with the response than in the opposite
channel only after the RS, suggesting that subjects did not prepare
a specific response during the delay. Accordingly, mean PMT in
RS blocks was generally slower (M = 780 ms) compared to that
observed in Experiment 2 (M = 402 ms) and Experiment 1 (M =
385 ms), due to the additional processing operations to translate the
representation of the stimulus category into a response. Mean MT
increased and the slope of muscle activation decreased as motion
coherence decreased. Within GCDRS, this finding suggests that
subjects retrieved some samples of motion evidence from memory
during the second phase of accumulation. Since mean PMT was not
modulated by coherence, this retrieval process must have occurred
after the accumulation variable had crossed the gate, perhaps as a
final attempt to check the decision.

Finally, the mean PMT and mean MT data showed the typical
markers of temporal preparation (Hasbroucq et al., 1995; Tandonnet
et al., 2003), consistent with our hypothesis. Specifically, mean
PMT and mean MT were faster in the 3 s compared to the longer
delay conditions, and the slope of muscle activation was steeper.
Within GCDRS, these effects can be explained by a modulation of
the rate of evidence accumulation in Phase 2, due to variations in
temporal attention.

General Discussion

The aim of this work was to extend current continuous flow models
of immediate decision reports to delayed decision reports occurring
after a relatively short time period (up to 7 s). We proposed a simple
extension of the GCD model framework, termed GCDRS, based on
empirical findings suggesting similar cortical mechanisms for
decision-making and working memory (Harvey et al., 2012; Wang,
2008;Wong&Wang, 2006).When the stimulus–response mapping is
known during stimulus presentation, we assumed a continuous flow of
the evidence accumulation variable to the motor structures that prepare
the response, similar to GCD, followed by sustained activity at the
motor preparation level during the delay corresponding to the level of
cumulative evidence. Gating inhibition at the motor preparation level
is increased to prevent muscle activation. RS detection and muscle
activation are then achieved by accumulating evidence from the RS,
similar to models of one-choice RT tasks (Ratcliff & Van Dongen,
2011; Smith, 1995). When the stimulus–response mapping is not
known during stimulus presentation and is instead delivered by the RS,
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we assumed that subjectsfirst compute a decision about the category of
the stimulus and store this categorical representation in working
memory. Motor preparation for a specific response begins after the
presentation of the RS, through additional processing operations to
convert the categorical representation of the stimulus into a response.
We tested predictions from GCDRS in three experiments that used

a RS variant of the random dot motion task featuring a manipulation
of motion coherence and a delay between stimulus offset and RS
onset. The stimulus–response mapping was known during stimulus
presentation in Experiments 1 and 2, and was delivered by the RS in
Experiment 3. Experiments 1 and 3 manipulated the duration of the
delay (3 s vs. 5 s vs. 7 s), and incorporated FR blocks of trials as a
control condition. Experiment 2 manipulated stimulus presentation
duration. Empirical findings from FR blocks replicate previous
findings, and provide additional evidence for GCD. Specifically,
mean PMT and mean MT increased as motion coherence decreased,
the latter being caused by a decrease in the slope of muscle acti-
vation. Moreover, the rate of partial muscle activation in the EMG
channel associated with the response increased as coherence
decreased, due to the decrease in the signal-to-noise ratio of the
motor preparation variable. Empirical findings from RS blocks were
globally in line with predictions from GCDRS. In Experiments 1 and
2, the rate of partial muscle activation during the delay was higher in
the EMG channel associated with the response than in the opposite
channel, suggesting that subjects maintained a representation of the
selected response at the motor preparation level. Consequently,
mean PMT was much faster compared to that observed in the FR
variant of the task. In Experiment 3, the rate of partial muscle
activation during the delay did not differ between the two EMG
channels, confirming that subjects did not prepare a specific
response before the RS. After the RS, the rate of partial muscle
activation was higher in the EMG channel associated with the
response than in the opposite channel, reflecting the formation of the
motor command. Mean PMT was much slower compared to the
previous experiments, due to additional processing operations to
convert the categorical representation of the stimulus into a
response, according to the mapping provided by the RS.
Experimental manipulations in RS blocks provided further

constraints on GCDRS. A decrease in motion coherence produced a
decrease in the slope of muscle activation in the three experiments,
though the amplitude of this modulation was too small in the first
two experiments to impact mean MT. This unexpected finding
suggests that subjects accumulated a few samples of motion evi-
dence retrieved from memory. The rate of evidence accumulation in
phase 2 (parameterw) thus seems to be determined by two sources of
evidence: evidence sampled from the RS and (to a much lesser
extent) evidence from the stimulus retrieved from memory. One
may be tempted to relate this finding to the recent study of Shushruth
et al. (2022), showing that monkeys store samples of evidence in
memory and do not accumulate evidence before the presentation of
the RS. There are, however, important differences between the two
studies. Most importantly, the processing scheme hypothesized by
Shushruth et al. (2022) predicts no difference in mean PMT and
mean MT between FR and RS blocks. However, findings from
Experiments 1 and 3 show a clear difference between the two task
variants. Although the amplitude of the difference was reduced in
Experiment 3, mean PMT was not modulated by motion coherence,
contrary to FR blocks. These findings suggest that (a) motion
evidence retrieved from memory cannot be the only source of

evidence determining parameter w, and (b) the retrieval process
occurs in late processing steps, after the evidence accumulation
variable in Phase 2 has crossed the gate. We thus interpret the
motion coherence effect on the slope of muscle activation as a final
attempt to verify the decision, though follow-up studies are needed
to gain a better understanding of this phenomenon.

Although mean PMT was not modulated by motion coherence in
Experiment 3, it systematically increased as motion coherence
decreased in Experiments 1 and 2. This effect thus appeared to be
driven by a modulation of the average level of sustained motor
preparation activity by coherence during the delay, consistent with
single-unit studies in monkeys (de Lafuente et al., 2015; Kiani et al.,
2008; Rao et al., 2012; Roitman & Shadlen, 2002; Shadlen &
Newsome, 2001). Specifically, the average level of sustained motor
preparation activity decreased as motion coherence decreased. This
phenomenon could have been caused by at least three mechanisms
(see the general introduction): a short post-threshold evidence
accumulation period caused by a delay introduced by the (unknown)
neural mechanism that compares activity to the threshold (Mazurek
et al., 2003), a threshold that decreases as processing time increases
due to the attentional cost of acquiring new samples of evidence
(Cisek et al., 2009; Ditterich, 2006a, 2006b; Drugowitsch et al.,
2012; Thura et al., 2012), or a mixture of terminated and non-
terminated decision processes (Ratcliff, 2006).11 The manipulation
of stimulus presentation duration in Experiment 2 also produced a
modulation of mean PMT. Specifically, mean PMT increased as
stimulus duration decreased. We do not see how a decreasing
threshold with increasing processing time or a short post-threshold
evidence accumulation period could explain this effect. The most
plausible explanation among the three hypotheses proposed above
seems to be the mixture of terminated and nonterminated processes:
shorter stimulus presentations increased the proportion of evidence
accumulation trajectories that failed to reach the threshold before
transitioning to sustained activity, due to a reduced amount of
evidence in the processing pipeline. This hypothesis points to a more
general problem, which has not yet been resolved in the literature. It
is unclear whether the decision-maker has access to partial cumu-
lative evidence or not (Meyer et al., 1985, 1988; Ratcliff, 1988,
2006; Usher & McClelland, 2001). Within GCDRS, this problem
could be formulated as follows. If the decision-maker has access to
partial cumulative evidence, then the level of cumulated evidence
could be maintained at the motor preparation level during the delay.
The starting point for the second phase of accumulation would then
correspond to this level. If not, then the decision-maker would
produce a guess. Motor preparation activity would drop to 0
(baseline level) during the delay, and the starting point for the
second phase of accumulation would thus be located farther away
from the gate. Although a rigorous test of these two alternative
hypotheses requires formal modeling, two aspects of the data from
Experiment 2 appear to favor the partial cumulative evidence
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11 One may argue that the probability of nonterminated evidence accu-
mulation trajectories is null for long stimulus presentation durations (such as
the 2 s condition in Experiments 1 and 2), making the mixture hypothesis
unlikely. To shed light on this issue, we computed the proportion of trials
beyond 2 s for each motion coherence condition from FR blocks in
Experiment 1. This proportion increased as motion coherence decreased
(40% coherence, M = 2.23%; 11% coherence, M = 10.78%; 2% coherence,
M = 18.65%). This analysis suggests the mixture hypothesis is plausible, at
least in Experiment 1.
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hypothesis. First, response accuracy did not differ in the 40%
coherence condition between the three stimulus presentation
durations (post hoc pairwise comparisons corrected with Holm’s
procedure: all ps > .05). This result is difficult to reconcile with the
guessing hypothesis, so long as one assumes that the probability of
nonterminated processes is not null in the 40% coherence/0.3 s
stimulus presentation condition. The partial cumulative evidence
hypothesis appears more plausible, as the level of cumulative
evidence for nonterminated processes should be close to the
threshold on average. Second, the guessing hypothesis predicts a
drop in response accuracy at slow PMTs, because the starting point
of motor preparation for guesses should be located farther away
from the gate compared to regular trials. The amplitude of this drop
should increase as stimulus duration decreases, because the pro-
portion of guesses should increase. One way to evaluate this
hypothesis consists in computing the proportion of correct responses
as a function of PMT bins. These so-called conditional accuracy
functions (Gratton et al., 1988; Luce, 1986) are shown in Appendix
D. Conditional accuracy dynamics are very similar across the three
stimulus duration conditions, and do not show a clear drop of
accuracy for slow PMTs.
Last, the delay manipulation in Experiments 1 and 3 provides

insight into temporal preparation mechanisms in RS tasks. As
expected, longer delays reduced the quantity/quality of attentional
resources allocated to the RS, and the impact of this modulation
on performance was detectable only when RS processing was
demanding. Specifically, we observed a reliable increase in mean
PMT and mean MT as the delay increased in Experiment 3 only, as
well as a decrease in the slope ofmuscle activation, similar to previous
findings obtained using the foreperiod paradigm (Hasbroucq et al.,
1995; Tandonnet et al., 2003). GCDRS offers a simple explanation for
this phenomenon: the decrease in attentional resources allocated to
the RS as the delay increases results in a decrease in the quality of
evidence accumulated in Phase 2. The lower rate of evidence
accumulation w produces an increase in mean PMT and mean MT,
and a decrease in the slope of muscle activation. Therefore, GCDRS

appears to be a promising tool for further investigation of the pro-
cessing mechanisms underlying temporal preparation.

Limitations and Future Directions

To our knowledge, this work constitutes the first attempt to extend
continuous flow models proposed in the context of immediate
decision reports to delayed decision reports in humans. It is also the
first EMG investigation of muscle activity in RS tasks. Three
limitations restrict its scope, but we see these limitations as di-
rections for future research rather than theoretical or methodolog-
ical flaws.
A first limitation concerns the absence of continuous neuro-

physiological signals at the motor preparation level to test latent
assumptions of GCDRS, and one may question the extent to which
the model is falsifiable without such signals. Note, however, that we
have allowed room for model falsification at several occasions. For
instance, having failed to observe a difference in the rate of partial
muscle activation between the two EMG channels during the delay
in Experiments 1 and 2 would have provided evidence against a
maintenance of the choice at the motor preparation level. Having
observed similar mean PMT and mean MT in RS and FR blocks in
Experiments 1 and 3 would have provided evidence against an

accumulation of evidence before the RS, and would have favored
the alternative processing scheme observed in monkeys by
Shushruth et al. (2022). Still, one may wonder if a prolongation of
evidence accumulation until the onset of the RS would predict
similar effects to GCDRS at the behavioral and EMG levels. Apart
from the fact that this hypothetical mechanism has never been
observed by previous neurophysiological studies in both monkeys
and humans (see the general introduction) and would lead to neural
firing rates so high that they would likely exceed biological limits, it
can be refuted on the basis of two arguments. First, we acknowledge
that some samples of motion evidence may remain in the processing
pipeline when the stimulus disappears due to sensory delays, and
these samples may be accumulated during the memory delay
(Resulaj et al., 2009). However, sensory delays in the random dot
motion task are much shorter (<0.3 s; Kiani et al., 2008; Resulaj et
al., 2009; Roitman & Shadlen, 2002) than memory delays used in
the present work (3–7 s), so the stream of evidence from the stimulus
appears insufficient to support an accumulation on such long
timescales. Second, assuming that participants could somehow
continue to accumulate motion evidence during the 3–7 s memory
delay, perhaps through repeated sampling from memory, the level
of cumulative evidence—and hence response accuracy—should
increase with increasing delays. However, the data from Experiments
1 and 3 provide substantial to strong evidence against an effect of
delay on response accuracy and strong to decisive evidence against an
interaction between delay and coherence.

Although continuous neurophysiological signals at the motor
preparation level do not appear to be critical for falsifying the basic
processing assumptions of GCDRS, they will provide a stronger test
of the model and may lead to theoretical developments. EEG, in
particular, offers two markers of motor preparation in the case of
left/right manual responses: the lateralized readiness potential and
the decrease in spectral activity in the μ/β band over the motor cortex
(de Jong et al., 1988; Gratton et al., 1988; Pfurtscheller & Lopes da
Silva, 1999). While both signals have been interpreted as reflecting
evidence accumulation (e.g., Gluth et al., 2013; Kelly et al., 2021;
Kelly & O’Connell, 2013; Lui et al., 2021; O’Connell et al., 2012;
Servant et al., 2016; Steinemann et al., 2018), recent studies suggest
that the lateralized readiness potential is silent in RS tasks during the
presentation of the stimulus and the memory delay, while the μ/β
signals exhibit ramping dynamics followed by sustained asymptotic
activity (Rogge et al., 2022; Twomey et al., 2016). Therefore, the
latter seems a good candidate to further test motor preparation
dynamics assumed by GCDRS in humans. The EEG technique,
however, is not well suited to the analysis of tasks featuring very long
trials, due to the high probability of movement and electrical artifacts,
though blind source separation methods could be applied to mitigate
this issue (e.g., Onton et al., 2006). Moreover, the poor signal-to-
noise ratio of EEG makes trial-by-trial signal analysis difficult (but
not impossible; e.g., Nunez et al., 2017; Ratcliff, Sederberg, et al.,
2016). Therefore, we believe that EEG investigations of delayed
decision reports should be conducted in tandem with EMG.

A second limitation concerns the absence of mathematical
modeling of the data. An important strength of current continuous
flow evidence accumulation models is their mathematical formal-
ization, which makes mechanistic assumptions explicit and pre-
dictions clear (Lewandowsky & Farrell, 2011). This formalization,
however, requires solving detailed and complex mechanistic pro-
blems, such as the transition between evidence accumulation and
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sustained activity within GCDRS, taking into account the mechanics
of the Kalman-Bucy filter at the motor preparation level. Since the
goal of the present work was to extend general processing aspects of
immediate decision reports to delayed decision reports, this step
appeared premature, but we believe that it is necessary for future
model developments and applications. An important challenge
concerns the small amount of available data given the complexity of
the model. In essence, the RS paradigm used in the present work
offers no behavioral data prior to the RS to constrain model
parameters. Consequently, we doubt that model parameters will be
identifiable if GCDRS is fit to behavioral data only. We see two
complementary ways to mitigate this problem. First, the original
GCD could be fit to data from FR blocks, and the rate of evidence
accumulation during stimulus presentation could be used to reduce
the degrees of freedomwithin GCDRS. Second, electrophysiological
data could help constrain the model. For instance, the rate of partial
muscle activation could be incorporated into the loss function
quantifying the discrepancy between data and model predictions
(Dendauw et al., 2024). However, partial muscle activations will
provide little constraints on the model when the stimulus–response
mapping is delivered by the RS, so we believe that the best strategy
would be to constrain GCDRS with both EMG and EEG data.
Finally, the scope of GCDRS is currently limited to short delays

between decisions and actions. An important task for future research
will be to extend the model’s scope to longer delays, involving long-
term memory. Since the choice cannot be actively maintained in the
form of sustained activity over long periods of time, it must be stored
using different neurophysiological mechanisms (e.g., long-term
potentiation and depression; Abraham et al., 2019). The present
work suggests that subjects store samples of evidence as well,
presumably to be able to check the initial choice. This strategy
appears particularly important in the context of long delays, because
it will allow subjects to recompute—and potentially revise—the
choice, taking into account new events that have occurred during
the delay.

Constraints on Generality

Participants in the three experiments were healthy students from
the University of Franche-Comté (mostly psychology under-
graduates), whereas the target population was much larger (healthy
young adults). Thus, convenience sampling was used, mainly due to
the constraints of conducting electrophysiological recordings.
Importantly, we see no theoretical reason why this sampling bias
could lead to amisleading picture of the neurocognitive mechanisms
underlying delayed decision reports investigated in the present
work. Another bias to consider is the selection of right-handed
participants. Left- and right-handed subjects are likely to have a
different mean motor time for left and right manual responses, so the
choice of right-handed subjects was made to avoid an additional
factor to consider in the statistical analyses, and additional com-
plexities inherent to mixed designs. We see no theoretical reason
why this handedness effect could interact with the factors manip-
ulated in the present experiments, but this might be something worth
investigating in future studies. Finally, delayed decision reports
were studied in the context of a RS variant of the random dot motion
task for the reasons explained in the general introduction section.
Because random dot stimuli vary in time and space, one may wonder
whether the present findings replicate with static stimuli that are very

common in the experimental psychology literature. In this respect,
we note that predictions from GCDRS would remain similar.
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Appendix A

Illustration of Partial Muscle Activations During the Premotor Time in FR Trials (Left Column) and
During the Delay in RS Trials (Right Column)

Note. Each of the six subplots represents a trial containing at least one partial muscle activation. The upper EMG signal corresponds to the left
hand, and the lower EMG signal corresponds to the right hand. The green solid vertical line corresponds to the onset of the stimulus. The blue
solid vertical line corresponds to the response, and the number below corresponds to the reaction time (the timescale is thus different between
subplots). Each partial muscle activation is indicated by a red arrow. The activation of the muscle leading to the response is indicated by a blue
arrow. In RS trials, the offset of the stimulus is represented by a green vertical dashed line, and the onset of the RS is represented by a blue vertical
dashed line. FR = free response; RS = response signal; EMG = electromyography. See the online article for the color version of this figure.

(Appendices continue)
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Appendix B

EMG Onset Detection

In each experiment, we applied the following three-step method
to the rectified EMG signals to detect onsets. The first step allowed
us to identify time windows of active EMG activity. For each epoch
and EMG channel, we first computed the mean Mb and standard
deviation SDb of the signal in the baseline period (from the
beginning of the epoch to stimulus onset). Time windows of EMG
activity corresponded to time windows in which the amplitude of the
signal exceeded the following criterion:

criterion = Mb + 7 × SDb: (B1)

This algorithm was applied to the entire epoch. Due to the
oscillatory nature of EMG activity, the amplitude of the signal can
sometimes fall below the criterion during an EMG burst. We thus
merged consecutive time windows of EMG activity separated
by less than 0.025 s. To further increase the robustness of EMG
detection in the presence of background noise, we discarded periods
of active EMG activity with a duration <n + 3 samples (since the

sampling frequency of our recordings is 1,024 Hz, one sample
corresponds to 0.98 ms), where n corresponded to the number of
time windows per second with a duration <7 samples (estimated
on the whole epoch). Finally, we removed time windows before
stimulus onset and after the response. This algorithm has the
advantage of making minimal assumptions regarding the minimal
duration of an EMG burst (because there is no theory specifying
how long an EMG burst should be) while increasing the detection
criterion in the presence of background noise.

The above method allowed us to identify time windows of
active EMG activity, but it is known to overestimate EMG onsets
(especially when a conservative criterion is used). To address this
problem, we applied the EMG onset detection algorithm proposed
by Santello and McDonagh (1998) to each window (see also Liu &
Liu, 2016). Finally, all triggers relative to stimulus and response
identification were removed, and each trial was visually inspected
by the experimenter. Erroneous EMG onsets were manually
corrected.

Appendix C

Statistical Results Relative to Model Predictions

Table C1
Summary of Statistical Tests of GCD and GCDRS Predictions (Experiment 1)

Dependent variable Effect tested p significance
Hypothesis favored by the inclusion Bayes factor

and corresponding strength of evidence

Response accuracy (all blocks) Block Type × Coherence a H1, decisive
Response accuracy (RS blocks) Delay H0, substantial

Delay × Coherence H0, strong
Mean MT (all blocks) Block Type × Coherence a H1, decisive
Mean MT (RS blocks) Coherence H0, substantial

Delay × Coherence H0, anecdotal
Slope of muscle activation (all blocks) Block Type × Coherence a H1, decisive
Slope of muscle activation (RS blocks) Coherence a H1, strong

Delay H0, substantial
Delay × Coherence H0, strong

Mean PMT (all blocks) Block Type × Coherence a H1, decisive
Mean PMT (RS blocks) Coherence a H1, substantial

Delay H0, anecdotal
Delay × Coherence H0, anecdotal

Rate of PMA in the EMG channel associated with
the response (FR blocks)

Coherence a H1, decisive

Rate of PMA during the delay (RS blocks) EMG channel a H1, strong
Rate of PMA in the EMG channel associated with
the response during the delay (RS blocks)

Coherence H0, anecdotal
Delay H0, anecdotal
Delay × Coherence H0, substantial

Note. Categories used to classify the strength of evidence correspond to those defined in the main text. RS = response signal; FR = free response; MT =
motor time; PMT = premotor time; PMA = partial motor activation; EMG = electromyography; GCD = gated cascade diffusion model; GCDRS = GCD
extension for response signal tasks.
a Significant p value at the α = .05 threshold level.

(Appendices continue)
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Table C3
Summary of Statistical Tests of GCD and GCDRS Predictions (Experiment 3)

Dependent variable Effect tested p significance
Hypothesis favored by the inclusion Bayes

factor and corresponding strength of evidence

Response accuracy (all blocks) Coherence a H1, decisive
Block type a H1, anecdotal
Block Type × Coherence H0, anecdotal

Response accuracy (RS blocks) Delay H0, strong
Delay × Coherence H0, decisive

Mean MT (all blocks) Block Type × Coherence a H1, decisive
Mean MT (RS blocks) Coherence a H1, decisive

Delay a H1, very strong
Delay × Coherence H0, strong

Slope of muscle activation (all blocks) Block Type × Coherence a H1, decisive
Slope of muscle activation (RS blocks) Coherence a H1, decisive

Delay a H1, very strong
Delay × Coherence H0, strong

Mean PMT (all blocks) Block Type × Coherence a H1, decisive
Mean PMT (RS blocks) Coherence H0, substantial

Delay a H1, very strong
Delay × Coherence H0, substantial

Rate of PMA in the EMG channel associated
with the response (FR blocks)

Coherence a H1, decisive

Rate of PMA (RS blocks) EMG Channel × Period a H1, decisive

Note. Categories used to classify the strength of evidence correspond to those defined in the main text. RS = response signal; FR = free response; MT =
motor time; PMT = premotor time; PMA = partial motor activation; EMG = electromyography; GCD = gated cascade diffusion model; GCDRS = GCD
extension for response signal tasks.
a Significant p value at the α = .05 threshold level.

Table C2
Summary of Statistical Tests of GCDRS Predictions (Experiment 2)

Dependent variable Effect tested p significance
Hypothesis favored by the inclusion Bayes factor

and corresponding strength of evidence

Response accuracy Stimulus Duration × Coherence a H1, strong
Mean MT Coherence Inconclusive

Stimulus duration H0, substantial
Stimulus Duration × Coherence H0, anecdotal

Slope of muscle activation Coherence a H1, substantial
Stimulus duration H0, substantial
Stimulus Duration × Coherence H0, anecdotal

Mean PMT Coherence a H1, very strong
Stimulus duration a H1, decisive
Stimulus Duration × Coherence H0, strong

Rate of PMA during the delay EMG channel a H1, decisive
Rate of PMA in the EMG channel associated with
the response during the delay

Coherence a H1, substantial
Stimulus duration a H1, decisive
Stimulus Duration × Coherence H0, anecdotal

Note. Categories used to classify the strength of evidence correspond to those defined in the main text. MT = motor time; PMT = premotor time; PMA =
partial motor activation; EMG = electromyography; GCDRS = GCD extension for response signal tasks.
a Significant p value at the α = .05 threshold level.

(Appendices continue)
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Appendix D

Conditional Accuracy Functions Averaged Across Subjects for Each Condition of Experiment 1 (Panel A),
Experiment 2 (Panel B), and Experiment 3 (Panel C)

Note. Each conditional accuracy function was computed by plotting the proportion of correct responses (y-axis) as a
function of the mean in each corresponding premotor time (PMT) bin. Ten PMT bins of equal size were chosen to
provide a detailed window on conditional accuracy dynamics. RS = response signal; FR = free response. See the online
article for the color version of this figure.
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