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Abstract
We elaborated an index, the Interference Distribution Index, which allows quantifying the relation between response times
and the size of the interference effect. This index is associated with an intuitive graphical representation, the Lorenz-
interference plot. We show that this index has some convenient properties in terms of sensitivity to changes in the distribution
of the interference effect and to aggregation of individual data. Moreover, it turns out that this index is the only one (up
to an arbitrary increasing transformation) possessing these properties. The relevance of this index is illustrated through
simulations of a cognitive model of interference effects and reanalysis of experimental data.

Keywords Delta plots · Conflict tasks · Interference effect · Mental chronometry

Introduction

Mental chronometry relies on the analysis of response
time (RT) across different experimental conditions to make
inferences on underlying cognitive processes (Donders,
1868). Beyond comparing mean RT in each experimental
condition, one can study RT distributions (Luce, 1986). De
Jong et al. (1994) introduced a particular method, called
delta plot, to describe the link between response speed and
the size of an experimental effect. This method consists
first in computing RT quantiles in each condition, and
then plotting their difference against their mean. Using this
method, one can see for instance whether the magnitude of
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an experimental factor is larger for slower than for faster
responses.

Delta plots have proven to be especially fruitful in the
study of tasks involving a stimulus-response compatibility
(SRC) manipulation, such as the Simon task (Simon, 1969).
In this task, subjects have to choose between a left- and
a right-hand key press according to the color of a visual
stimulus presented a few degrees either to the left or the
right of a fixation point. Mean RTs are typically slower for
contralateral stimulus-response associations (incompatible
trials) than for ipsilateral ones (compatible trials). De Jong
et al. (1994) found that the spatial correspondence effect
(difference between incompatible and compatible trials)
was larger for fast responses than for slow ones, resulting in
decreasing delta plots.

This result has been consistently replicated (for reviews,
see Pratte et al. (2010), Proctor et al. (2011), and Schwarz
and Miller (2012)). Delta plots that level-off for slower RTs,
or even become decreasing, are not restricted to the Simon
task and have also been observed in other tasks involving
some kind of conflict, such as the Eriksen flanker task (e.g.,
Burle et al. 2014, Mattler 2003, Ridderinkhof et al. 2005,
Wylie et al. 2007, 2009), masked priming tasks (Eimer,
1999; Finkbeiner & Caramazza, 2008; Atas & Cleeremans,
2015), or tasks involving lying and truth-telling (Debey
et al., 2015). Such experimental results stand in sharp
contrast to the positive linear relation between mean and
standard deviation of RTs usually observed (Luce, 1986;
Wagenmakers & Brown, 2007).

These observations suggest that the shape of delta plots
might be the signature of some specific cognitive processes.
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For instance, some argued that it reflects the spontaneous
decay of an automatic response (Hommel 1993, 1994),
while others proposed that it results from the deployment
of an active inhibitory process (De Jong et al. 1994, Rid-
derinkhof 2002a, b). Recently, various cognitive architec-
tures compatible with the particular relation between RT and
the size of the interference effect observed in conflict tasks
have been proposed (see, e.g., Schwarz and Miller (2012),
Ulrich et al. (2015), and Hübner and Töbel (2019)).

All of these theories have in common proposing a
cognitive interpretation of distribution of the interference
effect. While delta plots provide a compelling visualization
of the relation between RT and the size of the interference
effect, it is not obvious how they could be translated into
numerical measures suitable for statistical purposes (as
required, for instance, to test one of the above-mentioned
theories). The aim of this article is precisely to solve this
issue, by providing a quantitative measure of the distribution
of the interference effect. It is important to keep in mind
that, by themselves, delta plots say nothing about the
cognitive processes at play (Zhang & Kornblum, 1997). The
same is true about the index we propose: it is a measure of
the effects of the cognitive processes, not of their nature and
causes. After introducing this new index, we will illustrate
its properties and compare it to other methods through
simulations of a computational model for conflict tasks
(Ulrich et al., 2015) and reanalyses of an actual dataset.

The Interference Distribution Index

Definition

While the following analysis might be applied to data from
any type of task, we will consider a task involving an SRC
manipulation, such as the Simon task. Formally, let F be
the cumulative distribution function of RTs for correct trials
for which stimulus and response are incompatible, and G be
the cumulative distribution function of RTs for correct trials
for which stimulus and response are compatible. Given a
cumulative distribution function F , its associated quantile
function is defined as : F−1(p) = inf {x ∈ R |F(x) ≥ p }.
Let D(F, G)(p) be the size of the interference effect, as
measured by the difference of the RTs between conditions
at the pth quantile (i.e., D(F, G)(p) = F−1(p)−G−1(p)).
The delta plot corresponding to F and G is obtained
by plotting D(F, G)(p) against the mean of the RTs in
each condition at the pth quantile (i.e., M(F, G)(p) =
1
2

[
F−1(p) + G−1(p)

]
). When there is no ambiguity about

the underlying distribution functions, we will slightly abuse
notations, and simply note M and D instead of D(F, G)

and M(F, G), respectively. The total interference effect is
given by μ(D) = ∫ 1

0 D(p)dp. We will assume, throughout
the remainder of this article, that μ(D) > 0.

Our aim is to quantify the relation between RTs and
the size of the interference effect. To do so, we will
describe how the total interference effect is spread across
RT quantiles. Specifically, the proportion of the total
interference effect contained in the p × 100% fastest (pairs
of) trials is given by:

L(p) = 1

μ(D)

∫ p

0
D(x)dx. (1)

This function is very similar to the Lorenz curve (Lorenz,
1905). It is noteworthy, however, that a Lorenz curve
would require that D be a quantile function, which is
not the case here (since it is the difference between two
quantile functions). L(p) represents the share of the total
interference effect that is contained in the p × 100% fastest
(pairs of) trials. Note that L(0) = 0 and L(1) = 1. Because
of its resemblance to the Lorenz curve, we will call the
“Lorenz-interference plot” the graphical representation of
L. If the interference effect is constant across RT trials, then
L(p) = p for all p, and the Lorenz-interference plot will
coincide with the diagonal. The more the interference effect
is concentrated among the fastest trials, the higher will be
the Lorenz-interference plot. The area under the Lorenz-
interference plot is thus a natural measure of the distribution
of the interference effect, very much like the Gini index
(Gini, 1912) is related to the area under the Lorenz plot.
Formally, for any interference effect D, we propose the
following interference distribution index:

I (D) =
∫ 1

0
L(p)dp. (2)

We call this index the Interference Distribution Index
(IDI). Observe that if D is constant, I (D) = 1

2 . On the
other hand, if D is decreasing, I (D) > 1

2 . In particular,
if all the interference effect is concentrated in the fastest
pair of trials, I (D) = 1. Finally, if D is increasing,
I (D) < 1

2 . If all the interference effect is concentrated
in the slowest pair of trials, I (D) = 0. It has sometimes
been observed that the interference effect becomes negative
at high percentiles (translating into negative delta plots). In
such a case, the Lorenz-interference plot will decrease for
these highest percentiles. Therefore, these percentiles will
contribute negatively to the IDI (because the interference
effect will then be less concentrated among slowest trials).

We made available an R package called RTconflict,
which allows to easily implement the IDI.1 In practice, the
quantile functions must be approximated from data. We
set the number of quantiles to the number of trials in the
condition that contains the smallest number of observations.
We then crucially rely on the quantile function in R. This

1This package is available at the following address: https://github.com/
thibault-gajdos/RTconflict, and can be installed throughdevtools::
install github("thibault-gajdos/RTconflict").

https://github.com/thibault-gajdos/RTconflict
https://github.com/thibault-gajdos/RTconflict


Behav Res

function allows choosing the method used to compute
quantiles among the nine methods presented in Hyndman
and Fan (1996). We implemented the default method, but
allow the user to choose other methods.

Properties of the IDI

We will now turn to some properties of the IDI. First, the
IDI only depends on the interference effect, i.e., on the
difference between F−1 and G−1. Thus, it is invariant to
any change that does not impact F−1 − G−1. We call this
property “location invariance”. Assume, for instance, that
for some reason the motor execution time increases in the
same way in both conditions for some quantiles. Then the
IDI will not be modified.

Next, one can easily see that, if both F−1 and G−1

are scaled by the same positive constant, the Lorenz-
interference plot will not change (because both the
numerator and the denominator of L will then be multiplied
by the same constant), and so will therefore be the case for
the IDI. In other words, the IDI is invariant with respect to a
uniform increase of the interference effect across quantiles.
We call this property the “scale invariance property”. It is an
important property, as it allows measuring the distribution
of the interference effect independently from its overall
magnitude. This does not imply by any means that the
overall interference effect level is not meaningful, but that it
should be disentangled from its distributional properties.

The IDI has another invariance property that allows an
easy measure of the distribution of aggregated individual
interference effects. Let us consider two interference effects,
D1 and D2, with the same total magnitude (i.e., μ(D1) =
μ(D2)). Then, it is easy to check that the IDI corresponding
to the weighted average of D1 and D2 is simply the
weighted average of each IDI. Now, what if μ(D1) �=
μ(D2)? Recall that we are interested in the distribution of
the interference effect, and not in its level. We can thus
normalize D1 and D2 by μ(D1) and μ(D2), respectively,
and aggregate them linearly. We then obtain:

D = 1

2

D1

μ(D1)
+ 1

2

D2

μ(D2)
.

By the above property, we get:

I (D) = 1

2
I

(
D1

μ(D1)

)
+ 1

2
I

(
D2

μ(D2)

)
.

Finally, by the scale invariance property, we obtain:

I (D) = 1

2
I (D1) + 1

2
I (D2).

In other words, the aggregated IDI is nothing but the average
of individual IDIs. We call this property the “aggregation
property”.

Yet, all this tells little about how the IDI reflects the
relation between RT and the size of the interference effect.
In that respect, the IDI has a fundamental property that
we call the “transfer property”. Assume that the level
of interference effect increases for some quantile p, and
decreases of the exact same amount for some higher quantile
q. Such a transformation leaves the overall interference
effect unchanged, but more concentrated among the fastest
trials. It is easy to see that such a transformation indeed
results in an increase of the IDI. Moreover, the larger the
distance between p and q, the larger is this increase. On the
other hand, the variation of the IDI is the same wherever this
change occurs in the interference effect distribution (given
the distance between p and q).

Finally, the IDI is a continuous function. This means that
small changes in the RT distributions will result in small
changes in the IDI. This property, while a bit technical, has
its importance: it means that the IDI will not overreact to
small measurement errors.

Importantly, it turns out that not only does the IDI have
all the properties described above, but it is also the only
index (up to an increasing transformation) that satisfies
them all. In other words, if another index were to satisfy all
these properties, it would be an increasing transformation of
the IDI. This fact is proven in Appendix A.

Alternativemeasures of the interference effect
distribution

To the best of our knowledge, mainly two methods are
currently used to measure the distribution of the interference
effect, and both are directly based on delta plots. A very
common method consists of quantifying the decay of the
interference effect by the opposite of the slope of the
last segment of the delta plot (Delta Slope Index, DSI)
(Ridderinkhof, 2002a; Forstmann et al., 2008; van den
Wildenberg et al. 2010). This method has been used to
determine the effects of various psychiatric or neurodegen-
erative disorders on inhibitory control mechanisms, such as
attention deficit/hyperactivity disorder (e.g., Ridderinkhof
et al. (2005) and Suarez et al. (2015)), Tourette’s syndrome
(e.g., Wylie et al. (2013)), alien hand syndrome (McBride
et al., 2013), Parkinson’s disease (e.g., van Wouwe et al.
(2016) and Wylie et al. (2010)), mild cognitive impairment
(Wylie et al., 2007) and their modulation by psychotropic
drugs (e.g., Wylie et al. (2012) and van Wouwe et al.
(2016)). It has also been used to study the development of
inhibitory control across the lifespan (e.g., Bub et al. (2006),
Ambrosi et al. (2019), de Bruin and Della Sala (2017),
and Joyce et al. (2014)), the effect of hypoxia (Davranche
et al., 2016), acute exercise (e.g. Davranche et al. (2009)),
working memory capacity (Meier & Kane, 2015), and social
context (Sharma et al., 2010; Belletier et al., 2015).
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The DSI satisfies scale invariance, but not location
invariance. In particular, a similar (not necessarily uniform)
increase of both F−1 and G−1 (which lets the interference
effect unchanged) would actually yield a decrease of the
DSI. This index also does not satisfy the aggregation
property, which means that the average of the DSI across
subjects is difficult to interpret. These difficulties can be
circumvented by considering the quantile version of DSI,
i.e., by considering the slope of the last segment of a
discretized version of D. However, neither the DSI, nor
its quantile version satisfy the principle of transfer, as they
are totally insensitive to any change in the early quantiles
of the RT distribution. Finally, it should be stressed that
the DSI requires a discretization of the RTs, which entails
a substantial loss of information. Moreover, the number
of bins considered is quite arbitrary, and might affect the
results, as illustrated in “Mental fatigue and control”.

Another, albeit less frequent method, consists of measur-
ing the distribution of the interference effect by the opposite
of the trend of the delta plot (Delta Trend Index, DTI),
as estimated by a linear regression (De Jong et al., 1994;
Pratte et al., 2010). As the DSI, and for the same reasons,
the DTI satisfies the scale invariance property, but neither
location invariance nor the aggregation property. It does,
however, satisfy the transfer property. One might thus pre-
fer to replace it by the trend of D. Formally, let T (D) be the
opposite of the trend of D, as estimated by an OLS regres-
sion. It is obvious that T does not satisfy the invariance
property. This can however be easily fixed by normalizing it
by μ(D). We then obtain the following Interference Trend
Index (ITI):

IT I = T (D)

μ(D)
.

This index satisfies all the properties of the IDI, and is
actually equivalent to it: as shown in Appendix B, it is an
affine transformation of the IDI. Note that the ITI is slightly
distinct from the usual measure of the trend of the delta
plot in three respects: first, it is the trend of the interference
effect; second, it is computed on all quantiles (instead of
a subset of them, e.g., deciles, thereby avoiding the issue
of discretization); and third, it is normalized by the mean
interference effect. Among other things, this means that the
average of individual ITIs can easily be interpreted, contrary
to that of delta plot trends.

Illustrations

In order to better understand the differences between the IDI
and the DSI, we will compare the results of these methods
on different sets of data. First, we will turn to data generated

by a computational model for conflict tasks. This will allow
us to see how various cognitive processes, as defined within
this model, impact these measures. Next, we will reanalyze
experimental data from a study on the impact of mental
fatigue on cognitive control (Joyce et al., 2014).2

Diffusionmodel for conflict tasks

The drift diffusion model (DDM, Ratcliff (1978)) is one
of the most popular computational model of RTs in two-
alternative forced choice. It essentially postulates that the
evidence favoring an option is accumulated until it reaches
a threshold, at which stage a decision is made. While the
DDM proved to be very successful in modeling RTs in
many paradigms, it has been shown that it cannot account
for decreasing delta slopes (Pratte et al., 2010; Schwarz &
Miller, 2012).

The diffusion model for conflict tasks (DMC, Ulrich
et al. (2015)) is a versatile diffusion model that can account
for delta plots that level off, or even decrease, as observed
in experiments involving SRC manipulations, such as the
Simon task. The DMC is an extension of the DDM, where
the amount of evidence in favor of one option results from
the sum of two diffusion processes: a controlled process,
with a constant drift rate (μc), and an automatic process,
which generates an expected accumulated evidence that
increases in favor of one option (the response compatible
to the stimulus) before progressively fading. This dynamics
is described by a rescaled Gamma density function, with a
peak amplitude A, a shape parameter α and a characteristic
time τ .3 The peak amplitude determines the strength of
the automatic activation, while the shape parameter and
characteristic time are related to the speed of the fading
of automatic activation, be it due to an active suppression
or a passive decay. The shape parameter is generally fixed
at 2 (Ulrich et al., 2015). With this parameterization,
the characteristic time corresponds to the peak latency
of the automatic activation. More precisely, the smaller
the parameter τ , the faster the decline of the automatic
activation.

We simulated the DMC for various values of τ , and
computed the IDI and DSI for each simulated data set.
The DSI was calculated from deciles of the delta plots.
Observe that the IDI and the DSI are supposed to vary in the
same direction, i.e., to be larger whenever the interference
effect is more concentrated among the fastest responses. We

2All codes and data needed to reproduce the results of this section are
available at https://osf.io/5r8mq/.
3The expected mean of the accumulated evidence generated by the

automatic process at time t is thus given by: Ae− t
τ

[
te

(α−1)τ

]α−1
.

https://osf.io/5r8mq/
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thus expected these indices to mainly be impacted by the
characteristic time, and, specifically, to decrease when τ

increases.
We kept the parameters related to the controlled

processes and the speed-accuracy strategy fixed, with values
chosen in a plausible range (Ulrich et al., 2015; Servant
et al., 2016; White et al., 2017), while letting the peak
amplitude and the characteristic time varying (see legend of
Fig. 1 for more details).

Figure 1 clearly shows that the DSI is not a very good
measure of the interference effect distribution. It is strongly
affected by the peak of the automatic activation A, and is
not monotone with respect to the characteristic time. This
implies that there is a range of values of τ such that, for
a fixed A, the DSI increases with τ , which is exactly the
opposite to what is expected. The IDI seems, in that respect,
more satisfactory, as it globally decreases when τ increases,
and is much less sensitive to variations of A.

In order to further illustrate the differences between the
IDI and the DSI, we plot the cumulative distributions for
compatible and incompatible trials, delta plots, and Lorenz-
interference plots for two sets of parameters (see the legend
of Fig. 2 for details). As τ increases, the interference effect
is more concentrated among slowest trials. This is clearly
apparent when inspecting the cumulative distributions for
compatible and incompatible trials in Fig. 2: the distance
between the cumulative distributions increases more in the
bottom panel (corresponding to τ = 0.06) than in the top
panel (corresponding to τ = 0.03). The Lorenz-interference
plots confirm this fact. For instance, the 50% fastest trials
represent 52% of the interference effect when τ = 0.03,
while they represent only 40% of the interference effect

when τ = 0.06. As a consequence, the IDI is larger for
τ = 0.03 (IDI = 0.52) than for τ = 0.06 (IDI = 0.44). Yet,
the DSI index is smaller for τ = 0.03 (DSI = 0.29) than for
τ = 0.06 (DSI = 0.37). The reason for this result appears
clearly when one inspects the delta plots. While the slope of
the last segment is indeed steeper for τ = 0.06, it becomes
decreasing later (for the ninth decile, instead of the sixth
decile for τ = 0.03). The DSI fails to take into account this
difference.

Mental fatigue and control

We now turn to an actual data set in order to investigate to
what extent the choice of an index of the interference effect
distribution might lead to different conclusions. Joyce et al.
(2014) investigated the impact of mental fatigue (measured
by time on task) on control, defined as the suppression of
an automatic activation. We reanalyze here their results.
During two experimental sessions, 24 subjects completed
four sets of five blocks of 96 trials (i.e., 1920 trials of the
Simon task per session). We group trials of both sessions
in two conditions: the first two sets (condition “early”) and
the last two sets (condition “late”). We expect to find that
fatigue induces a depletion of cognitive control. According
to Ridderinkhof (2002a) activation-suppression theory, the
interference effect should be more concentrated among fast
trials in the “early” than in the “late” condition. We compare
the DSI and the IDI across conditions using a Bayesian
parameter estimation (Kruschke, 2013), implemented with
the R package BEST (Kruschke & Meredith, 2018). We use
BEST default priors with 10,000 burn-in steps, and report
95% highest-density intervals (HDI).

0.02

0.03

0.04

0.04 0.08 0.12 0.16τ

A

0.0 0.4DSI

0.02

0.03

0.04

0.04 0.08 0.12 0.16τ

A

0.4 0.5IDI

Fig. 1 Heat maps representing the values of the Delta Slope Index (left) and the Interference Distribution Index (right) for simulated data from
DMC as a function of the peak amplitude A and the characteristic time τ . A varies between 0.015 and 0.04 (by steps of 0.001), and τ varies
between 0.035 and 0.160 (by steps of 0.005). Other parameters are kept fixed with the following values: μc = 0.5, b = 0.05, T er = .03, α = 2.
The model is simulated in seconds, with a diffusion coefficient equal to 0.1. For each set of parameter values, 160,000 trials were simulated
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Fig. 2 Cumulative distributions for compatible and incompatible tri-
als (left), delta plots (middle), and Lorenz-interference plots (right) for
two characteristic times: τ = 0.03 (top) and τ = 0.06 (bottom), and

A = 0.03. 100,000 trials were simulated for each value of τ . Other
parameters were kept identical to those in Fig. 1. DSI and IDI are
displayed with the cumulative distribution functions

We start with the DSI. The comparison of slopes requires
deciding the number of quantiles used to compute the
slopes. We first compare slopes between the last two
deciles (see Fig. 3, left panel), and observe that there
is no significant difference between the two conditions
(early condition: DSI = 0.11, late condition: DSI = 0.061,
HDI of the difference: [−0.03, 0.12]). On the other hand,
comparing the slopes between the last quintiles reveals a
better control for the early condition (early condition: DSI
= 0.13, late condition: DSI = 0.051, HDI of the difference:
[0.020, 0.13]). These results show that the DSI might lead to
a different conclusion depending on the number of quantiles
considered (which is an arbitrary choice).

We now turn to the IDI. Interference effects (D) and
Lorenz-interference plots are shown in Fig. 4, where group

interference plots are obtained by computing the average
of individual ones. The IDI index reveals a better control
in the early condition compared to the late condition (early
condition: IDI = 0.61, late condition: IDI = 0.51, HDI
of difference : [0.001, 0.096]), suggesting that time-on-task
might impair cognitive control, as expected.

Discussion

Delta plots are a natural way to represent the link between
response speed and the size of an experimental effect,
by plotting the difference between RT quantiles in each
experimental factor against their means. It has been shown
that, while they are generally linearly increasing, they can
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Fig. 3 Delta plots in the early condition (red) and late conditions (blue) averaged across subjects, for five (left panel) and ten (right panel) bins

sometimes deviate from this pattern in tasks involving SRC
effects, such as the Simon task (De Jong et al., 1994).
This observation leads to interpreting the distribution of
the interference effect in SRC tasks as the signature of
some specific cognitive processes (De Jong et al. 1994,
Ridderinkhof 2002a, b, Schwarz &Miller 2012, Ulrich et al.
2015, Pratte et al. 2010, Proctor et al. 2011). In that context,
it is important to be able to measure the distribution of the
interference effect, independently of any cognitive theory.

In this article, we aimed at providing such a measure.
While extremely useful as a graphical device, delta plots
are not a pure representation of the distribution of the
interference effect, as they also account for the average

response time at each quantile. We thus step back from the
delta plots to the distribution of the interference effect, and
wonder how it can be quantified. We proposed a simple
measure (the Interference Distribution Index, IDI), that is
essentially a concentration index, measuring to what extent
the interference effect is concentrated among the fastest
trials. It is associated to a graphical representation (the
Lorenz-interference effect), that represents the proportion
of the total interference effect concentrated within the
p% fastest trials. We show that this measure has several
convenient properties, in terms of invariance with respect to
scale transformation, sensitivity to increase of concentration
among fastest trials, and aggregation of individual data.
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Fig. 4 Interference effect (representing the interference effect at each quantile, left) and Lorenz-interference plots (representing the share of the
mean interference effect that is contained in the p×100% fastest trials, right) in the early (red) and late (green) conditions. The Lorenz-interference
plot corresponding to early condition (red) is below the Lorenz-interference plot corresponding to late condition (green), which corresponds to a
larger IDI in the early condition as compared to the late condition
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Moreover, we show that this measure is the only one (up
to an arbitrary increasing transformation) that possesses
all these properties. We also show how this measure can
be applied to specific computational models and actual
experimental data.

It should be noted that we have restricted attention,
throughout this article, to the interference effect among
correct trials. The rationale for this choice is that the amount
and timing of errors are likely to reflect different cognitive
mechanisms than the distribution of the interference effect.
In particular, it has been argued that the timing of errors
could be the signature of the strength of response capture
(see van den Wildenberg et al. (2010), for a review), and
an index dedicated to measure this effect has been proposed
(Servant et al., 2018). It must also be stressed that, by
construction, the IDI does not depend on the size of the
interference effect. Again, this does not mean that this
information is not important, but simply that we tried to
design an index that specifically measures the distribution
of the interference effect. The specificity of chronometric
indices might help disentangle different important aspects
of cognitive processes.

Finally, it might be worth noting that, while new, the
IDI is closely related to the intuition of the authors who
first proposed to use delta plots to quantify the distribution
of the interference effect (De Jong et al., 1994). Indeed,
these authors suggested using the trend of the delta plot,
as approximated by a linear regression, as a measure of
the distribution of the interference effect. It turns out that
this measure does not allow a simple aggregation across
individuals (because it relies on delta plots), and does
not satisfy a simple invariance property with respect to
changes that do not impact the interference effect (location
invariance). However, these issues can easily be solved by
considering the trend of the interference effect instead of
that of the delta plot. Yet, this measure would depend on
the overall interference effect. To solve this problem, one
can simply normalize it by the total interference effect. It
turns out that the resulting measure (the ITI) is equivalent
to the IDI. In other words, the present work can be seen as
a rationalization of the use of the trend of the interference
effect as a measure of its distribution. As a side result,
it comes with an intuitive graphical representation (the
Lorenz-interference plot).

Appendix A: Axiomatic characterization
of the interference distribution index

We provide an axiomatic characterization for the Interfer-
ence Distribution Index. In order to do so, we will formally
state the properties exposed in “Properties of the IDI”, and
show that the IDI is the only index that satisfy them all.

Let us first introduce some notations and definitions. Let
F be the set of strictly increasing continuous cumulative
distribution functions of bounded response times. Note that
for any F in F , its inverse F−1 is continuous, non-negative,
and bounded. The set of interference effects is thus D ={
F−1−G−1

∣
∣∣F, G ∈ F and

∫ 1
0 F−1(p) − G−1(p)dp>0

}
.

We recall that, for any D ∈ D, μ(D) = ∫ 1
0 D(p)dp. One

easily checks that for all λ > 0 and all D ∈ D, λD ∈ D,
and for all α ∈ [0, 1], D1, D2 ∈ D, αD1 + (1− α)D2 ∈ D.

We now introduce the properties presented in “Properties
of the IDI” formally as axioms. In what follows, I is an IDI
index.

Axiom 1 The IDI I is a continuous real function on D.

Axiom 2 For all λ > 0 and D ∈ D, I (λD) = I (D).

Axiom 3 For all D1, D2 ∈ D such that μ(D1) = μ(D2),
all α ∈ [0, 1],
I (αD1 + (1 − α)D2) = αI (D1) + (1 − α)I (D2).

Axiom 4 For all D1, D2, 0 ≤ q < r ≤ 1 and ε > 0 such
that:
⎧
⎨

⎩

D1(q) = D2(q) + ε

D1(r) = D2(r) − ε

D1(p) = D2(p) for all p /∈ {q, r},
I (D1) > I (D2).

Axiom 5 For all D1, D2, 0 ≤ q1 < r1 ≤ 1, 0 ≤ q2 < r2 ≤
1 satisfying r1 − q1 = r2 − q2, and ε > 0 such that:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D1(q1) = D2(q1) + ε

D1(r1) = D2(r1) − ε

D1(q2) = D2(q2) − ε

D1(r2) = D2(r2) + ε

D1(p) = D2(p) for all p /∈ {q1, r1, q2, r2},
I (D1) = I (D2).

Theorem 1 An IDI I satisfies Axioms 1 to 5 if, and only if,

I (D) =
∫ 1

0
L(D)(p)dp,

up to a strictly increasing transformation.

Proof Necessity part of the theorem is easily checked. We
thus only provide a (sketch of the) proof for its sufficiency
part.

Let us define J (D) = μ(D)I (D). We will show that J is
affine, i.e., J (αD1+(1−α)D2) = αJ (D1)+(1−α)J (D2)
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for all α ∈ [0, 1]. Let D1, D2 ∈ D and α ∈ [0, 1]. Define
m = αμ(D1) + (1 − α)μ(D2). We have:

J (αD1 + (1 − α)D2)

= mI (αD1 + (1 − α)D2), by definition of J

= mI

(
α

m
D1 + 1 − α

m
D2

)
, by Axiom 2

= mI

(
αμ(D1)

m

D1

μ(D1)
+ (1 − α)μ(D2)

m

D2

μ(D2)

)

= m

[
αμ(D1)

m
I

(
D1

μ(D1)

)
+ (1 − α)μ(D2)

m

I

(
D2

μ(D2)

)]
, by Axiom 3

= m

[
αμ(D1)

m
I (D1) + (1 − α)μ(D2)

m
I (D2)

]
,

by Axiom 2

= αμ(D1)I (D1) + (1 − α)μ(D2)I (D2)

= αJ (D1) + (1 − α)J (D2), by definition of J .

Therefore, J affine. It is also continuous because I is
continuous. Note that J (0) = 0, and that by Axiom 4,
J (D) > 0 for all D > 0. We consider the linear extension J̃

of J on the vector space spanned by D. It is easily checked
that J̃ is positive continuous linear. Thus, by the Riesz
Representation Theorem (Aliprantis and Border (2006),
chap. 13), there exists a unique continuous and bounded
function ϕ on [0, 1] such that for all D ∈ D,

J̃ (D) =
∫ 1

0
ϕ(p)D(p)dp.

We now consider J as the restriction of J̃ on D. Axioms
4 and 5 imply that ϕ is a decreasing affine function (Gajdos
(2002), theorem 3.1). Therefore, there exist a < 0 and
b ∈ R such that:

J (D) =
∫ 1

0
(ap + b)D(p)dp. (3)

Integrating Eq. 3 by part we obtain:

J (D) = (a + b)μ(D) − a

∫ 1

0

∫ p

0
D(t)dtdp.

Thus, dividing both terms of the above equation by μ(D)

we get:

I (D) = (a + b) − a

∫ 1

0
L(p)dp.

Finally, the coefficients a and b can be arbitrarily chosen.
Setting a = −1 and b = 1 yields to:

I (D) =
∫ 1

0
L(D)(p)dp.

Appendix B: Equivalence between IDI and ITI

Let P be defined on [0, 1] by P(p) = p, and consider P and
D as random variables on [0, 1] with respect to the uniform
distribution. Then, for all D ∈ D,

T (D) = −cov(D, P )

var(P )
. (4)

We have:

cov(D, P ) =
∫ 1

0
pD(p)dp −

∫ 1

0
pdp

∫ 1

0
D(p)dp

= 1

2
μ(D) − μ(D)

∫ 1

0
D(p)dp,

by integration by parts

= 1

2
μ(D) − μ(D)I (D), by definition on I .

Since var(P ) = 1
12 , we obtain:

IT I (D) = −6 (μ(D) − I (D))

μ(D)

= 12I (D) − 6.

Therefore, ITI and IDI are equivalent (up to an affine
transformation).

Open Practices Statement All the material used in this article is
available at https://osf.io/5r8mq/(scriptanddata) and https://github.
com/thibault-gajdos/RTconflict(Rpackage).
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