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Abstract When facing situations involving uncertainty, experts might provide impr-
ecise and conflicting opinions. Recent experiments have shown that decision makers
display aversion towards both disagreement among experts and imprecision of infor-
mation. We provide an axiomatic foundation for a decision criterion that allows one
to distinguish on a behavioral basis the decision maker’s attitude towards imprecision
and disagreement. This criterion accommodates patterns of preferences observed in
experiments that are precluded by two-steps procedures, where information is first
aggregated, and then used by the decision maker. This might be seen as an argument
for having experts transmitting a more detailed information to the decision maker.

1 Introduction

When facing situations involving uncertainty, a decision maker might seek the advice
of experts to obtain some information. This raises the following question: how to
decide on the basis of information coming from several experts? Of course, different
experts might have different opinions. Although the disagreement among them can
be reduced through appropriate communication protocols and updating procedures,
it is often the case that some divergences still persist. Moreover, experts could also

T. Gajdos (B)
Aix-Marseille University (Aix-Marseille School of Economics), CNRS & EHESS, 2, rue de la Charité,
13236 Marseille Cedex 02, France
e-mail: thibault.gajdos@univ-amu.fr

J.-C. Vergnaud
CNRS, Centre d’Economie de la Sorbonne, 106-112 Boulevard de L’Hôpital,
75647 Paris Cedex 13, France
e-mail: vergnaud@univ-paris1.fr

123



T. Gajdos, J.-C. Vergnaud

provide imprecise information. We argue that one should take these two dimensions
into account.

An extensive literature has been devoted to the use of experts’ opinion in a probabi-
listic setting. Two approaches can be distinguished. On one hand, one may assume that
the decision maker has a prior distribution, and use experts’ assessments to update this
prior. This leads to the bayesian theory initiated by Morris (1974, 1977).1 On the other
hand, there might be situations where the decision maker is unable (or doesn’t want)
to provide a prior distribution. This is the situation we consider in this paper. In such
a case, the traditional approach consists in combining experts’ opinions into a single
piece of information, and then deciding on the basis of this aggregated information.2

A famous example of such an aggregation procedure is the linear aggregation rule,
that consists in computing a weighted average of experts’ probability distributions.3

We argue that this route may not be appropriate if one wishes to take into account
disagreement and imprecision.

Let us illustrate this difficulty with a stylized example. Suppose that experts are
asked to give predictions about some events. We allow the experts to express their
degrees of beliefs through probability intervals. The size of the intervals captures the
imprecision of their opinions. We compare now three possible situations, described in
the table below.

Expert a Expert b

Situation 1 1
2

1
2

Situation 2 1
4

3
4

Situation 3
[

1
4 ,

3
4

] [
1
4 ,

3
4

]

Consider first situations 1 and 2. In both cases, experts provide precise assessments.
According to the linear aggregation rule (and assuming that both experts are equally
reliable), one would end in both situations with the same aggregated information,
namely that the event will occur with probability 1

2 . However, these two situations
are rather different, as in the first one experts agree, whereas in the second one they
strongly disagree. The aggregation procedure fails to keep track of this disagreement.

A simple way out consists in aggregating experts opinions by probability inter-
vals. A natural candidate in situation 2 would be the interval [ 1

4 ,
3
4 ]. But consider

now situation 3. Admittedly, any sensible aggregation rule should respect unanimity
among experts. Thus the aggregation in situation 3 should also lead to the interval
[ 1

4 ,
3
4 ]. However, situations 2 and 3 greatly differ. Indeed, in situation 2, experts pro-

vide strongly conflicting but precise information, whereas in situation 3, they provide
strongly imprecise but similar predictions. The aggregation procedure considered does
not allow one to distinguish between imprecision of, and disagreement among, experts.

1 See, e.g., Clemen and Winkler (2007) for a survey.
2 See, e.g., Cooke (1991, chap. 11), for a survey.
3 This aggregating rule, applied to probability distributions, is known in the statistics literature as the
“pooling rule”. See Stone (1961), McConway (1981), and Genest and Zidek (1986) for a survey. It has been
extended to lower probabilities by Wagner (1989). See among others Nau (2002) and Troffaes (2006) for
aggregation rules for sets of probability distributions.
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This example suggests that it might be tricky to find an aggregation procedure that
takes into account simultaneously, in a satisfactory way, both imprecision of experts
assessments and disagreement among them. This would not be a problem if decision
makers were indifferent between ambiguity coming from imprecision of experts, or
disagreement among them. The few experimental studies that have addressed this ques-
tion to date suggest that such is not the case. In particular, Smithson (1999) introduces
the distinction between “source conflict” and “source ambiguity”. He formulated the
following “conflict aversion hypothesis”:

Likewise, conflicting messages from two equally believable sources may be
more disturbing in general than two informatively equivalent, ambiguous, but
agreeing messages from the same sources.

Smithson (1999, p. 184)

Smithson finds evidence supporting this hypothesis in experiments with students
involving verbal statements. Cabantous (2007) and Cabantous et al. (2011) conducted
experiments in a probabilistic setting (very similar to our example) with professional
actuaries. They observe that insurance professionals tend to charge higher premiums
under source conflict than under source ambiguity (which means in this context that
situation 3 is preferred to situation 2), thereby providing further support for the conflict
aversion hypothesis.

These results suggest that one should consider directly how a decision maker
behaves when using information coming from several sources. However, to the best
of our knowledge, there is no decision model that rationalizes the conflict aversion
hypothesis. We axiomatically characterize preferences that exhibit independently aver-
sion towards imprecision and disagreement. We obtain a two-step procedure. The first
step consists in using separately experts assessments in a multiple prior model. The
second step consists in an aggregation of these evaluations through a multiple weights
model. Such a model is compatible with the evidence found by Smithson (1999);
Cabantous (2007) and Cabantous et al. (2011). Moreover, we show that whenever
this model reduces to a two-step procedure consisting in first aggregating opinions
provided by experts, and then deciding on the basis of this aggregated information,
it violates the “conflict aversion hypothesis”. This might be seen as an argument
in favour of having experts commissions transmitting a more detailed information,
including divergent opinions, to the decision maker.

The rest of the paper is organized as follows. We present the formal setup in Sect. 2.
Section 3 is devoted to the axiomatic characterization of the decision maker prefer-
ences. We in particular introduce an axiom of disagreement aversion that can account
for the conflict aversion hypothesis. In Sect. 4 we present results on imprecision aver-
sion and disagreement aversion.

2 Setup

Probabilities have proved to be a powerful tool to summarize and transmit experts’
knowledge to policy makers, specially in situations of scientific uncertainty (see
e.g. Cooke 1991). Therefore, the first step for making policy decisions in complex
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situations (such as, for instance, climate changes) is to elicit experts beliefs. A large
literature, going back to Cooke (1906) path-breaking contribution, has been devoted to
the design of eliciting procedures for experts’ probabilistic predictions. The Matching
Probability rule is an example of such a procedure. It consists in offering the subject
the possibility to exchange a lottery based on his subjective probability against a lot-
tery with identical pay-off but known probability. Subjects are thus expected to accept
such exchange as long as the objective probability is larger than their subjective one.
The use of a Becker–DeGroot–Marschak mechanism guarantees that subjects reveal
their true beliefs. The idea is that these predictions reflect their knowledge, the data
they may observe, and the models or theories they use to interpret these data. Note
that the fact that beliefs are expressed as probabilities is dictated by the elicitation
procedure. It does not imply that experts do actually have precise beliefs.

In particular, assume that the data is scarce, or that the scientific knowledge is
poor, as it is the case for instance concerning climatic changes. Then it might be
too demanding to assume that experts’ beliefs and predictions can take the form of
precise probabilities. For instance, if the expert uses a theoretical model to build his
predictions, but is uncertain about the exact values of the parameters of his model,
he might provide the predictions obtained for a reasonable set of parameters. More
generally, experts might provide sets of predictions (instead of precise predictions),
reflecting either uncertainty in scientific knowledge (e.g., poor understanding of cou-
pled physics phenomena, initiating events, fault trees or event trees), or imprecision
(for instance due to error measurement) and scarceness (due to lack of observations)
of data. Such an approach has been successfully used in climatic sciences by Kriegler
et al. (2009), where experts express their beliefs on a given event through probability
intervals. Accordingly, we will assume that experts’ predictions can take the form of
sets of probabilities.

It is important to note at this point that there is nothing irrational in facing two
experts who provide distinct sets of predictions. It may simply reflects the fact that
the two experts use different models, and it does not imply that there is some asym-
metry of information. In particular, even after confronting their predictions, experts
may well persist in their disagreement. In other words, in this framework, agreeing to
disagree is not irrational. On the contrary, methods for combining experts predictions
like the famous Delphi technique have precisely been criticized on the basis that they
tend to “force” the consensus among experts, and thus lead to rather uninformative
statements (Rennie (1981)). Finally, let us make clear that we assume that all relevant
communication between experts has taken place and been taken into account before
they submit their statements. The disagreement among experts’ opinions, if any, is
thus what remains when all communication, learning, and updating procedures have
been implemented.

We now provide a formal definition of experts’ prediction and decision maker’s
preferences. Let � be a finite set of states.4 Let �(�) be the set of all probability
distributions over �, and P be the family of compact and convex subsets of �(�),
where compactness is defined with regard to the Euclidean space R

�. The support of

4 The finiteness assumption is not needed, and is only made for sake of simplicity. All our results extend
to the denumerable case.
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P ∈ P , denoted supp(P), is defined as the union over p ∈ P of the support of p.
Finally, for all s, t ∈ �, let δs be the probability distribution defined by δs(s) = 1, and
�st = co({δs, δt }).5

The collection of sets P is a mixture space under the operation defined by

λP + (1 − λ)Q = {λp + (1 − λ)q : p ∈ P, q ∈ Q}.
The set of pure outcomes is denoted by X . Let �(X) be the set of simple lotteries

(probability measures with finite supports) over X . Let F = { f : � → �(X)} be the
set of acts. Abusing notation, any lottery is viewed as a constant act which delivers
that lottery regardless of the states. The set F is a mixture space under the operation
defined by:

(α f + (1 − α)g)(ω) = α f (ω)+ (1 − α)g(ω), ∀ω ∈ �.
For E ⊆ �, denote by fE g the act that yields f (ω) if ω ∈ E and g(ω) if not.

The decision maker is endowed with a preference relation � defined on F×P×P .
When

( f, P1, P2) � (g, Q1, Q2),

the decision maker prefers choosing f when expert i’s prediction is Pi (i ∈ {1, 2}) to
choosing g when expert i’s prediction is Qi (i ∈ {1, 2}). Note that the fact that the
decision maker has preferences over triplets ( f, P1, P2) is not standard, in the sense
that it implies that she can compare the same act under different informational set-
tings. This is meaningful insofar as we do not postulate, as does Savage (1954), that the
state space represents the set of the worlds. It is for us a mere coding device, without
any substantial existence. For instance, coming back to our introductory example, the
problem of betting on an event in situation 1, 2 or 3 can be written as a problem of
choosing between ( f, { 1

2δs + 1
2δt }, { 1

2δs + 1
2δt }), ( f, { 1

4δs + 3
4δt }, { 3

4δs + 1
4δt }) and

( f, co({ 1
4δs + 3

4δt ,
3
4δs + 1

4δt }), co({ 1
4δs + 3

4δt ,
3
4δs + 1

4δt })), where f is a bet on
state s.

A distinctive feature of our framework is thus that the set of experts is fixed, and
that they provide various predictions. As an example, consider the case of specialized
experts panels, who are solicited on a regular basis for a large number of problems (for
instance bioethical committees, giving recommendations concerning genetically mod-
ified organisms). The relation between the decision maker and the experts is repeated,
and therefore it makes sense to consider such preference relation with varying pre-
dictions for the two experts. Moreover, we will assume that the experts have already
been selected and evaluated, and that the decision maker cannot deduce anything more
regarding their reliability from their statements. With this two assumptions (fixed set
of experts and given reliability) we disregard the important problem of the design
and selection of experts committees. We leave these questions for future research. We
focus here on the last step of the decision process, namely the decision itself.

5 Given two sets P and Q, co(P, Q) denotes the convex hull of P and Q.
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To summarize, we make here the following implicit assumptions:

• The information (P1, P2) is what is available after all discussions among experts;
• The committee size and composition is fixed;
• The decision maker cannot deduce anything concerning experts reliability from

their statements.

3 Representation

The celebrated Maxmin Expected Utility, suggested by Gilboa and Schmeidler (1989),
is now largely accepted as the simplest and most prominent model of decision with
multiple priors. It states that an act f is evaluated by

min
p∈C

E pu( f ),

where E pu( f ) denotes the expected utility of f with respect to probability p and
utility u, and C is a set of probabilities. Thus, the decision maker behaves as if she
evaluates act f by its worst possible expected utility over C . However, C does not
necessarily represents the information available to the decision maker. For instance,
she might believe that any probability distribution is possible, but nevertheless behaves
as if only one was relevant. In that case, C reduces to a singleton, and the decision
maker behaves as a Bayesian. On the other hand, in a similar informational context,
the decision maker may be extremely cautious, in which case C would be the set of all
possible probabilities. Thus C is related to the information available to the decision
maker and her attitude towards uncertainty. As Gilboa and Schmeidler (1989) focused
on decisions made in a given informational context, they left implicit how the set C is
related to the information available to the decision maker.

Gajdos et al. (2008a) clarify the link between the set C and the information avail-
able to the decision maker, when this information is an objective set of probabilities.
In order to do so, they consider an extended framework, and assume that the decision
maker has preferences over couples of acts ( f ∈ F ) and information (P ∈ P). In
this setting, and act f with an information P is evaluated by

min
p∈�(P) E pu( f ),

where � : P → P describes how the set of probabilities used to evaluate an act is
related to the available information. In particular, a Bayesian decision maker is char-
acterized by the fact that �(P) is a singleton for all possible P , whereas a decision
maker who is extremely cautious would be characterized by �(P) = P .

As a starting point, we simply assume here that Gilboa–Schmeidler Maxmin
Expected Utility model still holds when the decision maker faces two sets of probabil-
ities. In that case, it is natural to assume that the set of probabilities used to evaluate an
act is related to the two pieces of available information. In other words, assuming that
the first expert provides information P and the second expert provides information Q,
an act f would be evaluated by
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min
p∈ψ(P,Q) E pu( f ).

We will also require the following extension of von-Neumann–Morgensten’s inde-
pendence axiom to hold. Assume that ( f, P, P) � ( f, Q, Q). This means that the
decision maker prefers f when both experts predict P to f when both experts predict
Q. Assume that, in both situations, experts now consider that the true probability dis-
tribution could belong to a same set R with some probability α. They thus now predict
αR + (1 −α)P if they first predicted P , and αR + (1 −α)Q if they first predicted Q.
Applying the logic of von-Neumann–Morgenstern’s independence axiom probability-
wise yield that the decision maker’s ranking should not be affected by this change, and
thus that ( f, αR + (1−α)P, αR + (1−α)P) � ( f, αR + (1−α)Q, αR + (1−α)Q).
This requirement is no more (but no less) compelling than the usual independence
axiom for lotteries. It implies that, for all P, Q ∈ P , and all α ∈ (0, 1), ψ(αP + (1−
α)Q, αP + (1 −α)Q) = αψ(P)+ (1 −α)ψ(Q) (see Gajdos et al. (2008a)). In other
words, ψ is linear on the set {(P, P) : P ∈ P} of unanimous assessments.

Finally, although not indisputable, it makes sense to assume that the decision maker
should not consider probabilities that are excluded by the two experts and cannot be
obtained as a convex combination of some of the experts predictions. This means that
ψ(P, Q) ⊆ co(P ∪ Q). As we will see, most of our results can be readily adapted
if one relaxes this condition. We mainly keep it because we find it reasonable. These
assumptions are formally stated below.

Axiom 1 (Maxmin preferences) There exist a function V : F ×P ×P → R which
represents �, a mixture-linear function u : �(X) → R, a mappingψ : P ×P → P
linear on {(P, P) : P ∈ P} and satisfying ψ(P, Q) ⊆ co(P ∪ Q) such that:

V ( f, P, Q) = min
p∈ψ(P,Q) E pu( f ).

Moreover u is unique up to a positive linear transformation, and ψ is unique.

The next axiom states that if (i) the decision maker prefers f when both experts
agree on an information set P1 to g when both experts agree on P2, and (i i) she also
prefers f when both experts agree on an information set Q1 to g when both experts
agree on Q2, then she prefers f when experts’ opinions are (P1, Q1) to g when experts’
opinions are (P2, Q2). This is essentially a dominance axiom, similar in substance to
the traditional Pareto requirement.

Axiom 2 (Dominance) For all f, g ∈ F , P1, Q1, P2, Q2 ∈ P ,

( f, P1, P1) � (g, P2, P2)

( f, Q1, Q1) � (g, Q2, Q2)

}
⇒ ( f, P1, Q1) � (g, P2, Q2)

Moreover, if one of the preferences on the left-hand side is strict, so is the preference
on the right-hand side.

This axiom implies that information matters only insofar as it has an impact on
the valuation of acts. Consider for instance, the case where ( f, P, P) ∼ ( f, Q, Q).
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Axiom 2 implies that ( f, P, Q) ∼ ( f, P, P), even if P 	= Q. A simple aggregating
rule that does not satisfy this Axiom is the following. If P ∩ Q 	= ∅, then use P ∩ Q
as an aggregated information; otherwise, use co(P ∪ Q). The intuition behind this
rule is simple. If P ∩ Q 	= ∅, the decision maker is confident enough to forget the
disagreement among experts. On the other hand, if P ∩ Q 	= ∅ she would be much
more cautious and consider as plausible all scenario provided by both experts (as well
as their convex combinations). To see why this rule is incompatible with Axiom 2,
consider the following example. Assume there are two states, s1 and s2, and let f be
the act “getting 1 if s1 occurs, and 0 otherwise”. Without loss of generality, assume
that the utility of getting 1 is equal to 1 and that the utility of getting 0 is equal to 0. Let
P1 = {(p, 1− p)|p ≥ 1

4 }, P2 = {(p, 1− p)| 1
2 ≥ p ≥ 1

4 }, Q1 = Q2 = {(p, 1− p)| ≥
3
4 }. Observe that P1 ∩ Q1 = Q1, P2 ∩ Q2 = ∅ and conv(P2 ∪ Q2) = P1. Assume that
V (g, P, P) = minp∈P E pu(g), so that ( f, P1, P1) ∼ ( f, P2, P2). By Axiom 2 this
implies that ( f, P1, Q1) ∼ ( f, P2, Q2), and given the aggregation rule under scrutiny
we should have ( f, Q1, Q1) ∼ ( f, P1, P1). This implies in turn minp∈P1 E pu( f ) =
1
4 = minp∈Q1 E pu( f ) = 3

4 , a contradiction. More generally, Axiom 2 excludes the
possibility that the decision maker infers the degree of reliability of the experts from
the degree of disagreement among them.

This is consistent with assumptions made at the end of Sect. 2. Namely, we assume
that the pool of experts has been selected and evaluated before they submit their reports,
and that the decision maker’s confidence into them is not affected by their reports. This
would in particular be the case when the pool of experts is a stable committee chosen
to address a large number of issues. Of course, the problem of choosing the number
of experts and selecting them is important, but it requires an extended and dynamic
framework, in which preferences are defined on triplets involving acts, experts’ opin-
ions, and committees. Put differently, as a first step, our setup is essentially static, and
ignores the question of experts selection.

It is worth exploring the consequences of Axiom 2 in the traditional case, where
each expert provides a single probability distribution, and the decision maker is an
expected utility maximizer. Assume there exist a von Neumann–Morgenstern function
u and an aggregation rule ϕ : �(�) × �(�) → �(�).6 Axiom 2, together with a
weak unanimity condition, then implies that the aggregated probability of an event
only depends on the probabilities assigned to that event by the experts. It has been
shown by McConway (1981) that this property, called the Strong Setwise Function
Property characterizes the linear aggregation rule, as soon as there are at least three
different states in �. We thus have the following result.

Proposition 1 Let |�| ≥ 3. Assume there exists a von Neumann–Morgenstern func-
tion u and an aggregation rule ϕ : �(�)×�(�) → �(�). such that for all f, g ∈
F , p1, p2, q1, q2 ∈ �(�),

( f, p1, q1) � (g, p2, q2) ⇔ Eϕ(p1,q1)u( f ) ≥ Eϕ(p2,q2)u( f ).

6 Note that these assumptions are weaker than those implied by 1, since we do not impose linearity and
convexity conditions on ϕ.
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Then, the following statements are equivalent:

(i) Axiom 2 holds and ϕ(p, p) = p for all p ∈ �(�);
(ii) There exists α ∈ (0, 1) such that for all p, q ∈ �(�), ϕ(p, q) = αp + (1 − α)q.

This result makes clear that Axiom 2 strongly constrains the aggregation procedure.
It is also clear that it precludes to take into account some aspects of the possible con-
flicts among experts. The aim of our last axiom is precisely to describe what differences
among experts may actually affect the decision maker.

Given two information sets P, Q and α ∈ (0, 1), the information set αP +(1−α)Q
can be seen as a compromise between P and Q in the following sense. It is the set of
probability distributions obtained if one considers that the true probability distribution
belongs to P with probability α, whereas it belongs to Q with probability (1−α). Our
axiom says that the decision maker always prefers when experts come in with opinions
that are less disparate, i.e., always prefers ( f, αP + (1 − α)Q, αQ + (1 − α)P) to
( f, P, Q).

Axiom 3 (Disagreement aversion) For all f ∈ F , P, Q ∈ P, α ∈ (0, 1),

( f, αP + (1 − α)Q, αQ + (1 − α)P) � ( f, P, Q).

3.1 Main result

We derive from our axioms the following representation.

Theorem 1 Axioms 1, 2 and 3 are satisfied iff there exist a mixture-linear function
u : �(X) → R, a linear mapping ϕ : P → P satisfying ϕ(P) ⊆ P and a symmetric
closed and convex subset � in �({1, 2}) such that � can be represented by:

V ( f, P, Q)

= min
π∈�

[
π(1)

(
min

p∈ϕ(P)
∑
ω

u( f (ω))p(ω)

)
+π(2)

(
min

p∈ϕ(Q)
∑
ω

u( f (ω))p(ω)

)]
.

Moreover u is unique up to a positive linear transformation, and ϕ and� are unique.

First, note that if one relaxes the condition ψ(P, Q) ⊆ co(P ∪ Q) in Axiom 1,
the only change in Theorem 1 would be that the ϕ(P) should not be constrained to
belong to P . Observe also that, if ϕ(P) = P , and � = �{1, 2}, then V ( f, P, Q) =
minp∈co(P∪Q)

∑
ω u( f (ω))p(ω).

Maximizing this formula can be though of as a two-step procedure. First, the deci-
sion maker transforms experts information through ϕ, and uses the resulting sets of
probability to evaluate the act under consideration. Second, she aggregates linearly
these two evaluations, using the worst weight vector in a set �. The first step deals
with experts’ assessments. It is important to observe that we face two very different
kinds of sets of probability distributions. Indeed, P and Q are strictly informational.
They capture the information available to the decision maker. ϕ(P) and ϕ(Q) are the
behavioural beliefs the decision maker would use to evaluate acts if she were facing
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either P or Q.7 The mapping ϕ introduces a subjective treatment of an imprecise
information. In the second step, evaluations based on information provided by experts
are aggregated. The set� captures the decision maker’s attitude towards disagreement
among valuations based on experts assessments.

Note that we also have:

V ( f, P, Q) = min
p∈�⊗(ϕ(P),ϕ(Q))

∑
ω

u( f (ω))p(ω),

where �⊗ (ϕ(P), ϕ(Q)) = {π(1)p + π(2)q|π ∈ �, p ∈ ϕ(P), q ∈ ϕ(Q)}. Thus
maximizing this formula can be thought of as first aggregating experts information
through � ⊗ (ϕ(P), ϕ(Q)), and then applying the maxmin expected utility crite-
rion over this set. Therefore the set �⊗ (ϕ(P), ϕ(Q)), which corresponds to the set
ψ(P, Q) in Axiom 1, and has only a behavioral meaning: it is related to the decision
maker’s preferences.

Finally, note that a different route is also possible: It consists in aggregating behav-
ioral beliefs of experts into behavioral beliefs of the decision maker. It essentially
amounts to ask the experts what their own decision would be (possibly assuming
that they would evaluate consequences the same way as the decision maker) and to
aggregate these stated preferences. A large literature in social choice theory has been
elaborated along these lines, following Harsanyi (1955) seminal paper.8 See among
others (Mongin 1995; Gilboa et al. 2004; Gajdos et al. 2008b; Chambers and Echenique
2009; Nascimento 2012).

Indeed, this problem has also been addressed by Crés et al. (2011), who consider
the problem of aggregating preferences of Maxmin Expected Utility maximizers who
share the same utility function into a Maxmin Expected utility. They show that under
Pareto constraint, the aggregate set of priors takes the form�⊗ (P1, . . . , Pn), where
Pi denotes individual i’s set of priors.9 They thus aggregate behavioral beliefs into
behavioral beliefs.10 Finally, Nascimento (2012) considers the problem of aggregating
preferences of experts who agree on the ranking of risky prospects, but have different
perception of or attitude towards ambiguity. He obtains an aggregation rule that, when
restricted to maxmin preferences, is a generalization of the rule of Crés et al. (2011)
(although in a different framework and with a different justification).

4 Attitude towards information

4.1 Uncertainty and disagreement

We now turn to the behavioral characterization of imprecision and disagreement
aversion. We use the standard comparative approach. Note that all the results in

7 In Gilboa and Schmeidler (1989) celebrated maxmin expected utility model, only behavioural beliefs
appear.
8 Although Harsanyi (1955) actually considers the case where experts share the same beliefs, and disagree
on valuations. But it really laid the foundations for the aggregation of experts’ behavioral beliefs.
9 The two papers were independently developed.
10 Actually, one can also interpret experts’ beliefs in Crés et al. (2011) as informational beliefs. But then
it implies that the decision maker is forced to be extremely averse towards uncertainty.
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this subsection remain true if one relaxes the condition ψ(P, Q) ⊆ co(P ∪ Q) in
Axiom 1.

We first define comparative imprecision aversion as in Gajdos et al. (2004) and
Gajdos et al. (2008a). Let a and b be two decision makers. We will say that b is more
averse to imprecision than a if, whenever a prefers a precise situation to an impre-
cise one, so does b. In order to control for risk aversion, this definition is restricted
to acts whose consequences are lotteries over two outcomes only (binary acts). For-
mally, for all (x̄, x) ∈ X2, we define a corresponding set of binary acts as F b

x̄,x ={
f ∈ F

∣∣∃ps ∈ [0, 1], s.t. f (s) = (x̄, ps; x, 1 − ps),∀s ∈ �}
, where (x̄, ps; x, 1−

ps) denotes the lottery that yields x̄ with probability ps and x with probability (1− ps).

Definition 1 Let �a and �b be two preference relations defined on F × P × P .
Suppose there exist two prizes x̄, x in X such that both a and b strictly prefer x̄ to x .
We say that �b is more averse to imprecision than �a whenever for all f ∈ F b

x̄,x , p ∈
�(�), P ∈ P

( f, {p}, {p}) �a ( f, P, P) ⇒ ( f, {p}, {p}) �b ( f, P, P).

The following proposition shows how ϕ is related to the decision maker’s attitude
towards imprecision. Intuitively, the more ϕ “shrinks” P , the less imprecision averse
is the decision maker.

Proposition 2 The following assertions are equivalent:

1. �b is more averse to imprecision than �a,
2. for all P ∈ P, ϕa(P) ⊂ ϕb(P).

The following example illustrates this result in the simple case where there are only
two states.

Example 1 Let � = {s, t}, ϕ(P) = {(1 − θ)c(P)+ θp|p ∈ P}, where θ ∈ [0, 1]
and c(P) is the center of P , and � = {

(1 − α)
( 1

2 ,
1
2

) + α(t, 1 − t)
∣∣ t ∈ [0, 1]},

where α ∈ [0, 1]. In other words, ϕ(P) is a contraction of P around its center, with
a contraction rate equal to (1 − θ), whereas � is a symmetric set of probabilities on
�({s, t}).

In view of Proposition 2, θ can be interpreted as a measure of imprecision aversion
(imprecision aversion increases with θ ).

Comparative disagreement aversion will be defined along the same line as com-
parative imprecision aversion. It simply states that decision maker b is more averse to
disagreement than decision maker a if, whenever a prefers a consensual situation to a
situation with divergent information, so does b.

Assume that a decision maker strictly prefers ( f, P, P) to ( f, Q, Q). Then (by
Axiom 2) she will have the following preferences: ( f, P, P) � ( f, P, Q) �
( f, Q, Q). Now, consider R(α) = αP + (1 − α)Q. Of course, the larger α, the
better ( f, R(α), R(α)). Since ( f, R(1), R(1)) � ( f, P, Q) � ( f, R(0), R(0)), there
is an (unique) α̂ such that ( f, R(α̂), R(α̂)) ∼ ( f, P, Q). Loosely speaking, R(α̂) is
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the worst consensual information that the decision maker considers as equivalent to
(P, Q) when facing act f . Thus (1 − α̂) can be seen as the “price” she is ready to pay
to avoid disagreement. Decision maker b is more averse to disagreement than decision
maker a if b is ready to “pay” a higher price to avoid disagreement.

Definition 2 Let �a and �b be two preference relations defined on F ×P ×P . We
say that �b is more averse to disagreement than �a if for all f ∈ F , P, Q ∈ P, α ∈
(0, 1), such that both a and b prefers ( f, P) to ( f, Q) if :

( f, αP + (1 − α)Q, αP + (1 − α)Q) �a ( f, P, Q)

then,

( f, αP + (1 − α)Q, αP + (1 − α)Q) �b ( f, P, Q).

The following Proposition shows how� is related to the decision maker’s attitude
towards disagreement. Intuitively, the larger�, the more averse to disagreement is the
decision maker.

Proposition 3 The following assertions are equivalent:

1. �b is more averse to disagreement than �a,
2. �a ⊆ �b.

Example 2 Let ϕ and� as in Example 1. In view of Proposition 3, α can be interpreted
as a measure of disagreement aversion (disagreement aversion increases with α).

4.2 Conflict aversion hypothesis and reduction

We now turn to the “conflict aversion hypothesis” postulated by Smithson (1999), and
experimentally observed by Cabantous (2007) and Cabantous et al. (2011). Accord-
ing to this hypothesis, one typically observes that decision makers prefers situations
where uncertainty is due to the vagueness of experts to situations where it comes from
the disagreement among sharp experts. For instance, in the two states case, decision
makers prefer a situation where experts beliefs on state s are [p, p̄] to a situation where
expert 1 believes that state s will occur with probability p, whereas expert 2 believes
that it will occur with probability p̄. In order to study the conflict aversion hypothesis
in our model, we first need to translate it formally, which is done by the following
axiom.

Axiom 4 (Conflict Aversion Hypothesis) For all {p1} , {p2} ∈ P , if p1 	= p2, then:

{∀ f ∈ F , ( f, co
{

p1, p2
}
, co

{
p1, p2

}
) � ( f, {p1} , {p2})

∃g ∈ F , (g, co
{

p1, p2
}
, co

{
p1, p2

}
) � (g, {p1} , {p2})

The traditional aggregation approach assumes that decisions with information com-
ing from various experts can be made in two steps. First, information provided by
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experts is somehow aggregated into a unique piece of information; then this aggre-
gated information is used by the decision maker, who transforms it into behavioral
beliefs. The problem can then be reduced to independent questions. First, how should
we aggregate experts opinions? Second, what should the decision be, given this aggre-
gated information? It is natural to wonder whether it is always possible to reduce the
behavioral approach we follow to the traditional two-steps aggregation. This would be
the case if any pair of statements is equivalent for the decision maker (from the infor-
mational point of view) to some congruent statements from the two experts. In other
words, for all P, Q, there should exist R such that for all f, ( f, P, Q) ∼ ( f, R, R).
We formalize this idea with the following Reduction Axiom.

Axiom 5 (Reduction) For all P1, P2 ∈ P , there exists R ∈ P such that supp(R) ⊆
supp(P1 ∪ P2) and, for all f ∈ F , ( f, P1, P2) ∼ ( f, R, R).

In order to provide a clear answer to that question we must get rid of some path-
ological situations. In particular, we must avoid the rather strange case where a more
precise information yields to a worse evaluation for all acts (which would translate
into the fact that, for some P, Q ∈ P such that P � Q, ϕ(Q) � ϕ(P)). This is done
by the following axiom which stipulates that, if there is no conflict among experts,
an increase in the precision of the information they deliver translates into a greater
evaluation of at least one act.

Axiom 6 (Preference for Precision of Information) For all P, Q ∈ P , if P � Q
then either ( f, P, P) ∼ ( f, Q, Q) for all f ∈ F , or there exists g ∈ F such that
(g, P, P) � (g, Q, Q).

The following Proposition shows that, under this rather innocuous axiom, the
Reduction Axiom and the Conflict Aversion Hypothesis are incompatible. In other
words, within our framework, our procedure can accommodate patterns of prefer-
ences that cannot be explained by a standard two-step procedure.

Proposition 4 If (Preference for Precision of Information) and (Reduction) hold, then
(Conflict Aversion Hypothesis) is not satisfied.

The following example illustrates this result in the particular case of the prefer-
ences defined in Example 1. In this case, (Reduction) holds if, and only if, the Conflict
Aversion Hypothesis is violated. On the other hand, the model can also accomodate
the Conflict Aversion Hypothesis for a wide range of the parameters.

Example 3 Assume |�| = 2 and let ϕ(P) and � be as in Example 1. Then the fol-
lowing statements are equivalent:

1. Reduction holds.
2. θ ≥ α.
3. Conflict aversion hypothesis does not hold.

Finally, we suggested in the introduction that a natural way to aggregate information
so as to take into account the decision maker attitude towards disagreement consists in
considering the unions of the pieces of information provided by the experts. It is thus
a natural question to ask if this rule can be obtained in our framework. The answer is:
yes. It actually corresponds to the case of extreme aversion towards both disagreement
and imprecision.
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Proposition 5 The two statements are equivalent:

(i) For all P, Q ∈ P, ( f, P, Q) ∼ ( f, co(P ∪ Q), co(P ∪ Q))
(ii) � = �12 and ∀P ∈ P, ϕ(P) = P.
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Appendix: Proofs

A.1 Proof of Proposition 1

We assume in the sequel that ( f, p1, q1) � (g, p2, q2) iff Eϕ(p1,q1)u( f ) ≥ Eϕ(p2,q2)

u(g). Let U ( f, p, q) = Eϕ(p1,q1)u( f ). We first need to state formally in our setup the
Strong Setwise Function Property proposed by McConway (1981).

Strong Setwise Function Property (SSFP). There exists a function ϕ̃ : [0, 1]2 →
[0, 1] such that for all p, q ∈ �(�) and all σ ∈ �,ϕ(p, q)(σ ) = ϕ̃(p(σ ), q(σ )).

We also need the following Unanimity condition.

Unanimity. For all p ∈ �(�), ϕ(p, p) = p.
Now, assume there exists σ, p1, q1, p2 and q2 such that p1(σ ) = p2(σ ), q1(σ ) =

q2(σ ) and ϕ(p1, q1)(σ ) 	= ϕ(p2, q2)(σ ). Define f such that u( f (s)) = 0 for all
s 	= σ and u( f (σ )) = 1. By (Unanimity), U ( f, p1, p1) = ∑

s p1(s)u( f (s)) and
U ( f, p2, p2) = ∑

s p2(s)u( f (s)). Therefore, U ( f, p1, p1) = U ( f, p2, p2). Simi-
larly, U ( f, q1, q1) = ∑

s q1(s)u( f (s)) = ∑
s q2(s)u( f (s)) = U ( f, q2, q2). Thus by

dominanceU ( f, p1, q1) = U ( f, p2, q2), and thereforeϕ(p1, q1)(σ ) = ϕ(p2, q2)(σ ),
a contradiction. Thus SSFP is satisfied.

By Theorem 3.3 in McConway (1981), we know that, whenever |�| ≥ 3, SSFP
is satisfied iff ϕ is the linear pooling rule. By Axiom 2, it must moreover be
the case that no expert receive zero weight. Conversely, it is straightforward to
check that the linear pooling rule with positive weights satisfies (Unanimity) and
Axiom 2.

A.2 Proof of Theorem 1

Necessity is easily checked. We thus only prove sufficiency.
Let U ( f, P) = V ( f, P, P) for all f ∈ F and P ∈ P, where V is defined by

Axiom 1, and U = range U . Since u in Axiom 1 is unique up to a positive linear
transformation, we can choose it such that U (h1, P) = 1 and U (h2, P) = −1 for
some constant acts h1, h2, and for any P (by unicity of ψ in Axiom 1, � is not
degenerated, and thus h1, h2 exist). Note that U is convex. Indeed, let f, g ∈ F
and P, Q ∈ P . By linearity of u and convexity of �(X), there exist constant acts f̄
and ḡ such that U ( f, P) = U ( f̄ , P) and U (g, Q) = U (ḡ, Q) = U (ḡ, P). But for
all α ∈ [0, 1],U (α f̄ + (1 − α)ḡ, P) = αU ( f̄ , P) + (1 − α)U (ḡ, P) and therefore
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U (α f̄ + (1 − α)ḡ, P) = αU ( f, P) + (1 − α)U (g, Q), proving that U is convex.
This also implies that U × U is convex.

Let D = {(U ( f, P),U ( f, Q))| f ∈ F , P, Q ∈ P}.
Lemma 1 D = U × U .

Proof Let f, g ∈ F and P, Q ∈ P . By the same reasoning as above, there exist two
constant acts f̄ and ḡ such that U ( f, P) = U ( f̄ , P) and U (g, Q) = U (ḡ, Q). Fix an
arbitrary event E ⊂ � with E 	= �, and let P ′, Q′ ∈ P be such that supp(P ′) ⊆ E
and supp(Q′) ⊆ � \ E . We then have, by definition of U,U ( f̄ E ḡ, P ′) = U ( f, P)
and U ( f̄ E ḡ, Q′) = U (g, Q), and therefore (U ( f, P),U (g, Q)) ∈ D , proving D =
U × U . ��

Now, define a binary relation � on U = U × U as follows: (u, v) �
(u′, v′) if, and only if, there exist f, g ∈ F , P1, P2, Q1, Q2 ∈ P such
that U ( f, P1) = u,U ( f, P2) = v,U (g, Q1) = u′,U (g, Q2) = v′ and
V ( f, P1, P2) ≥ V (g, Q1, Q2). By Lemma 1 and Axioms 1 and 2, � is a
well defined, complete, transitive and continuous binary relation on U. Thus it
can be represented by a continuous function V̂ : U → R (Debreu (1954),
Theorem I). Moreover, by Axiom 2, (u1, u2) ≥ (v1, v2) implies (u1, u2) �
(v1, v2).11 Thus V̂ is non decreasing. By definition, V ( f, P1, P2) ≥ V (g, Q1, Q2)

iff V̂ (U ( f, P1),U ( f, P2)) ≥ V̂ (U (g, Q1),U (g, Q2)). Therefore, there exists an
increasing function W : R → R such that for all f ∈ F and P1, P2 ∈ P, V ( f, P1,

P2) = W (V̂ (U ( f, P1),U ( f, P2))). Let Ṽ = W ◦ V̂ .
The two following steps essentially mimic Gilboa and Schmeidler (1989)’s and

Chateauneuf (1991) proofs.

Lemma 2 For all w ∈ D, α > 0 such that αw ∈ D, Ṽ (αw) = αṼ (w).

Proof Let F c the set of constant acts. Pick f0 ∈ F c such that u( f0(ω)) = 0 (this
is possible, given the normalization we choose for V ). Let w = (w1, w2) ∈ D .
By Lemma 1 there exist f ∈ F , Q1, Q2 ∈ P such that U ( f, Q1) = w1 and
U ( f, Q2) = w2. By definition of Ṽ and V we have V ( f, Q1, Q2) = Ṽ (w). For all
α ∈ (0, 1), we have

U (α f + (1 − α) f0, Q1) = min
p∈ψ(Q1,Q1)

∑
ω

p(ω)u (α f (ω)+ (1 − α) f0(ω))

= min
p∈ψ(Q1,Q1)

∑
ω

p(ω) (αu( f (ω))+ (1 − α)u( f0(ω)))

= αU ( f, P)

= αw1.

11 For two vectors of real numbers x = (x1, x2) and y = (y1, y2), we write x ≥ y whenever x1 ≥ y1 and
x2 ≥ y2.
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Similarly, U (α f +(1−α) f0, Q2) = αw2. Thus Ṽ (αw) = V (α f +(1−α) f0, Q1, Q2).
But:

V (α f + (1−α) f0, Q1, Q2)= min
p∈ψ(Q1,Q2)

∑
ω

p(ω) (u(α f (ω)+ (1−α) f0(ω)))

= min
p∈ψ(Q1,Q2)

∑
ω

p(ω) (αu( f (ω)+ (1 − α)u( f0(ω)))

= min
p∈ψ(Q1,Q2)

∑
ω

p(ω) (αu( f (ω))) ,

since u( f0(ω) = 0 for all ω

= αV ( f, Q1, Q2), by definition of V

= αṼ (w).

Thus Ṽ (αw) = αṼ (w) for all α ∈ [0, 1], and thus for all α > 0. ��
We extend Ṽ to R

2 by homogeneity, and still call Ṽ its extension (which is homo-
geneous and monotone).

Lemma 3 For all w ∈ R
2, μ ∈ R, Ṽ (w + (μ,μ)) = Ṽ (w)+ μ.

Proof Let w1, w2, μ be such that 2w1, 2w2, 2μ ∈ U . Given the homogeneity of Ṽ ,
this assumption is without any loss of generality. Let f ∈ F , h ∈ F c and P1, P2 ∈ P
be such that U ( f, P1) = 2w1,U ( f, P2) = 2w2, and U (h, P1) = 2μ. Note that since h
is constant, we actually have U (h, P1) = U (h, P2) = V (h, P1, P2) = 2μ. We obtain:

Ṽ (w + (μ,μ)) = Ṽ

(
1

2
U ( f, P1)+ 1

2
U (h, P1),

1

2
U ( f, P2)+ 1

2
U (h, P2)

)

= Ṽ

(
U

(
1

2
f + 1

2
h, P1

)
,U

(
1

2
f + 1

2
h, P2

))

= V

(
1

2
f + 1

2
, P1, P2

)

= 1

2
V ( f, P1, P2)+ 1

2
V (h, P1, P2)

= 1

2
Ṽ (2w)+ μ

= Ṽ (w)+ μ.

��
It remains to show that Ṽ is symmetric and concave. This is the key part of the

proof, where the Disagreement Aversion axiom plays a crucial role.

Lemma 4 Ṽ is symmetric.

Proof We first show that Ṽ is symmetric. Without loss of generality (because of the
homogeneity of Ṽ ), choose w,w′ ∈ D . Let f ∈ F and P1, P2 ∈ P be such that
U ( f, P1) = w1 and U ( f, P2) = w2. Let α ∈ [0, 1]. We have:

Ṽ (αw1 + (1 − α)w2, αw2 + (1 − α)w1)
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= Ṽ (αU ( f, P1)+ (1 − α)U ( f, P2), αU ( f, P2)+ (1 − α)U ( f, P1))

= Ṽ (U ( f, αP1+(1−α)P2),U (αP2+(1−α)P1)),

by linearity of ψ on {(P, P) : P ∈P}.
Thus Axiom 3 implies for all w1, w2 ∈ R (by homogeneity) and all α ∈ [0, 1]:

Ṽ (αw1 + (1 − α)w2, αw2 + (1 − α)w1) ≥ Ṽ (w1, w2).

Thus, in particular, Ṽ must be symmetric. Indeed, setting α = 0, we obtain Ṽ (w2,

w1) ≥ Ṽ (w1, w2). Permuting w1 and w2 yields Ṽ (w1, w2) ≥ Ṽ (w2, w2), and thus
Ṽ (w1, w2) = Ṽ (w2, w1). ��
Lemma 5 Ṽ is concave.

Proof Letw = (w1, w2) andw′ = (w′
1, w

′
2) in D . Let us prove that for all α ∈ [0, 1],

Ṽ (αw + (1 − α)w′) = Ṽ (αw + (1 − α)(θw + (1 − θ)w̄))

≥ αṼ (w)+ (1 − α)Ṽ (w′).

We will first suppose that Ṽ (w) = Ṽ (w′), and let consider two subcases: w1 ≤
w2, w

′
1 ≤ w′

2 (Step 1) and w1 ≤ w2, w
′
1 ≥ w′

2 (Step 2). We will finally consider the
case Ṽ (w) 	= Ṽ (w′) in Step 3.

Step 1.
Let w = (w1, w2) and w′ = (w′

1, w
′
2) in D be such that Ṽ (w) = Ṽ (w′), w1 ≤

w2, w
′
1 ≤ w′

2, and w̄ = (t, t) ∈ D be such that Ṽ (w̄) = Ṽ (w) (by axioms conti-
nuity and monotonicity of Ṽ , such an w̄ exists). Without loss of generality, assume
0 < w1 ≤ w′

1 (and thus, by Axiom 2,w2 ≥ w′
2) and 0 < w′

2. First, we show that there
exists θ ∈ [0, 1] such that w′ = θw+ (1 − θ)w̄. Assume that such is not the case. Let
λ > 0 be such that λw′ ∈ [w, w̄], and let θ̂ be such that λw′ = θ̂w+ (1 − θ̂ )w̄. Since
w′ /∈ [w, w̄], λ 	= 1. Thus, by Axiom 2, either Ṽ (λw′) > Ṽ (w′) or Ṽ (λw′) < Ṽ (w′).
But by Lemmas 2 and 3, Ṽ (λw′) = Ṽ (θ̂w+ (1 − θ̂ )w̄) = θ Ṽ (w)+ (1 − θ)Ṽ (w̄) =
Ṽ (w) = Ṽ (w′), a contradiction.

Thus, let θ be such that w′ = θw + (1 − θ)w̄. Then, for all α ∈ [0, 1],

Ṽ (αw + (1 − α)w′) = Ṽ (αw + (1 − α)(θw + (1 − θ)w̄))

= Ṽ ((α + (1 − α)θ)w + (1 − α)(1 − θ)w̄)

= (α + (1 − α)θ)Ṽ (w)+ (1 − α)(1 − θ)Ṽ (w̄)

= Ṽ (w)

= αṼ (w)+ (1 − α)Ṽ (w′),

where the third equality follows by c−affinity and homogeneity of Ṽ .

Step 2.
Assume now that w = (w1, w2) and w′ = (w′

1, w
′
2) in D are such that Ṽ (w) =

Ṽ (w′), w1 ≤ w2, w
′
1 ≥ w′

2, and let w̄ = (t, t) ∈ D be such that Ṽ (w̄) = Ṽ (w). We
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assume, without loss of generality, 0 < w1 ≤ w′
2 (and thus, by Axiom 2 and Lemma

4, w2 ≥ w′
2) and 0 < w′

2.
By Lemma 4, Ṽ (w1, w2) = Ṽ (w2, w1). Thus Ṽ (w2, w1) = Ṽ (w′

1, w
′
2). By the

preceding argument, there exits θ ∈ [0, 1] such that w′ = θ(w2, w1) + (1 − θ)w̄.
Therefore, for all α ∈ [0, 1]:

Ṽ (αw + (1 − α)w′) = Ṽ (αw + (1 − α)(θ(w2, w1)+ (1 − θ)w̄))

= Ṽ ((αw + (1 − α)θ(w2, w2))+ (1 − α)(1 − θ)w̄)

= (α+(1−α)θ)Ṽ
(

α

α+(1−α)θ w+ 1 − α

α+(1−α)θ (w2, w1)

)

+ (1−α)(1−θ)Ṽ (w̄), by c−affinity and homogeneity of Ṽ

≥ (α + (1 − α)θ)Ṽ (w)+ (1 − α)(1 − θ)Ṽ (w̄), by Axiom 3,

and therefore Ṽ (αw + (1 − α)w′) ≥ Ṽ (w), the desired result.

Step 3.
It remains to deal with the case where Ṽ (w) 	= Ṽ (w′). Assume without loss of

generality that Ṽ (w) > Ṽ (w′). Let μ = Ṽ (w) − Ṽ (w′). Define w̃ = w′ + (μ,μ).
By c-affinity of Ṽ , we have Ṽ (w̃) = Ṽ (w′)+ μ = Ṽ (w). Thus, for all α ∈ [0, 1],

Ṽ (αw̃ + (1 − α)w) ≥ αṼ (w̃)+ (1 − α)Ṽ (w), by steps 1 and 2

≥ αṼ (w′)+ (1 − α)Ṽ (w)+ αμ.

On the other hand,

Ṽ (αw̃ + (1 − α)w) = Ṽ (α(w′ + μ)+ (1 − α)w)

= Ṽ (αw′ + (1 − α)w)+ αμ by c−affinity of Ṽ .

Therefore Ṽ (αw′ + (1 − α)w) ≥ αṼ (w′)+ (1 − α)Ṽ (w), the desired result. ��
By Lemmas 2, 3 and 5, Ṽ is concave and homogeneous of degree 1, and c−affine.

Therefore, by a classical result (see, e.g., the “Fundamental Lemma” in Chateauneuf
(1991) and Lemma 3.5 in Gilboa and Schmeidler (1989)), there exists a unique closed
and convex set � such that Ṽ (w1, w2) = minπ∈� π(1)w1 + π(2)w2. Furthermore,
by Lemma 4,� is symmetric. Recall that by definition V ( f, P1, P1) ≥ V (g, Q1, Q1)

iff Ṽ (U ( f, P1),U ( f, P2)) ≥ Ṽ (U (g, Q1),U ( f, Q2)). Then, the definition of U and
Axiom 1 yields to Theorem 1, with ϕ(P) = ψ(P, P).

A.3 Proof of Proposition 2

This proposition is in the vein of Theorem 3 in Gajdos et al. (2004) and Theorem 4 in
Gajdos et al. (2008a). For sake of exactness, we adapt the proof here.

It is straightforward to check that 2 implies 1.
Conversely, suppose ad absurdum that �b is more averse to imprecision than �a

but that there exists p∗ ∈ ϕa(P) such that p /∈ ϕb(P). Using a separation argument,
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there exists a function φ : � → R such that E p∗φ < minp∈ϕb(P) E pφ. Let x̄ and
x in X be such that both a and b strictly prefer x̄ to x . Note that we can choose by
normalization ua and ub so that ua(x̄) = ub(x̄) = 1 > ua(x) = ub(x) = 0. Since �
is a finite set, there exist numbers m > 0 and �, such that for all ω ∈ �,mφ(ω) +
� ∈ [0, 1]. Let αω = mφ(ω) + �, ω ∈ �. Let f 0 ∈ F b

x̄,x such that f 0(ω) =
αωδx̄ + (1 − αω)δx for all ω ∈ �. Then, E p∗u( f 0) < minp∈ϕb(P) E pu( f 0) which
implies that ( f, P, P) �b ( f, {p∗}, {p∗}). However, since p∗ ∈ ϕa(P), E p∗u( f 0) ≥
minp∈ϕa(P) E pu( f 0)which implies that ( f, {p∗}, {p∗}) �a ( f, P, P) and thus yields
a contradiction with �b being more averse to imprecision than �a .

A.4 Proof of Proposition 3

Since�a and�b are symmetric, there existαa andαb such that�a = {(1−αa)(
1
2 ,

1
2 +

αa(t, 1 − t)|t ∈ [0, 1]} and �b = {(1 − αb)(
1
2 ,

1
2 + αb(t, 1 − t)|t ∈ [0, 1]}. For all

f ∈ F , P, Q ∈ P, α ∈ (0, 1), i = a, b, ( f, αP + (1 − α)Q, αP + (1 − α)Q) �i

( f, P, Q) if:

min
p∈ϕi (αP+(1−α)Q) E pu( f )

≥ min
(π,1−π)∈�i

(
π min

p∈ϕi (P)
E pu( f )+ (1 − π) min

p∈ϕi (Q)
E pu( f )

)
.

Since the ϕi are linear, we then obtain:

α min
p∈ϕi (P)

E pu( f )+ (1 − α) min
p∈ϕi (Q)

E pu( f )

≥
(

1 + αi

2

)
min

(
min

p∈ϕi (P)
E pu( f ), min

p∈ϕi (Q)
E pu( f )

)

+
(

1 − αi

2

)
max

(
min

p∈ϕi (P)
E pu( f ), min

p∈ϕi (Q)
E pu( f )

)

Furthermore, if both a and b prefer ( f, P) to ( f, Q), then ( f, αP +(1−α)Q, αP +
(1 − α)Q) �i ( f, P, Q) iff α ≥ 1−αi

2 .

Thus if �b is more averse to disagreement than �a , then 1−αa
2 ≥ 1−αb

2 and thus
�a ⊆ �b. Conversely, if�a ⊆ �b, then �b is more averse to disagreement than �a .

A.5 Proof of Proposition 4

Since for all P ∈ P, ϕ(P) ⊆ P , we have, for all s ∈ �,ϕ({δs}) = δs . The Conflict
Aversion Hypothesis implies�⊗ (ϕ (�st ) , ϕ (�st )) ⊆ �⊗ (ϕ ({δs}) , ϕ ({δt })), and
thus ϕ (�st ) ⊆ �⊗ ({δs}, {δt }). Axiom (Reduction) implies that there exists R ⊆ �st

such that �⊗ ({δs}, {δt }) = ϕ(R). Thus we have:

ϕ(�st ) ⊆ �⊗ ({δs}, {δt }) = ϕ(R),
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and therefore ϕ(�st ) ⊆ ϕ(R). Since R ⊆ �st , Axiom (Preference for Precision of
Information) implies ϕ(R) = ϕ(�st ). Therefore, �⊗ (ϕ ({δs}) , ϕ ({δt })) = ϕ(�st ),
and thus ( f, {δs}, {δt }) ∼ ( f,�st ,�st ) for all f ∈ F , which contradicts the Conflict
Aversion Hypothesis.

A.6 Proof of Example 3

Assume without loss of generality that � = {1, 2}. Let δ1 = (1, 0), δ2 = (0, 1) and
δ12 = {p = (p1, p2) ∈ [0, 1]2|p1 + p2 = 1}. Any set P ∈ P can be written in a
unique way as: P = γ1δ1+γ2δ2+γ3δ12, with γ1, γ2, γ3 ≥ 0 such that γ1+γ2+γ3 = 1.

For all R = γ1δ1 + γ2δ2 + γ3δ12, and all θ ∈ [0, 1], we have:

ϕ(R) =
(
γ1 + (1 − θ)γ3

2

)
δ1 +

(
γ2 + (1 − θ)γ3

2

)
δ2 + θγ3δ12.

(1 ⇒ 2).
Let us suppose that Axiom (Reduction) holds, that is for all P, Q ⊆ �({1, 2}),

there exists R ⊆ �({1, 2}) such that �⊗ (ϕ(P), ϕ(Q)) = ϕ(R).
Let P = λ1δ1 +λ2δ2 +λ3δ12, Q = λ′

1δ1 +λ′
2δ2 +λ′

3δ12 and α ∈ [0, 1], θ ∈ [0, 1].
Without any loss of generality, let us assume that λ′

1 + 1−θ
2 λ′

3 ≥ λ1 + 1−θ
2 λ3.

Consider a first case where θ = 0. Then

ϕ(P) =
(
λ1 + λ3

2

)
δ1 +

(
λ2 + λ3

2

)
δ2,

ϕ(Q) =
(
λ′

1 + λ′
3

2

)
δ1 +

(
λ′

2 + λ′
3

2

)
δ2.

Simple computations show that

�⊗ (aδ1 + (1 − a)δ2, bδ1 + (1 − b)δ2)

=
(

1 + α

2
a + 1 − α

2
b

)
δ1 +

(
1 − α

2
a + 1 + α

2
b

)
δ2 + (b − a) αδ12

if a ≤ b.
If R is such that ϕ(R) = �⊗ (ϕ(P), ϕ(Q)), then we must have

ϕ(R) =
(
γ1 + γ3

2

)
δ1 +

(
γ2 + γ3

2

)
δ2 = �⊗ (ϕ(P), ϕ(Q))

=
(

1 + α

2
a + 1 − α

2
b

)
δ1 +

(
1 − α

2
a + 1 + α

2
b

)
δ2 + (b − a) αδ12,

where a = λ1 + λ3
2 and b = λ′

1 + λ′
3

2 .
Therefore, we must have α = 0 and thus θ ≥ α.
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Let suppose now that θ > 0. Consider the case where λ2 = 1 and λ′
1 = 1. Then:

�⊗ (ϕ(P), ϕ(Q)) = �⊗ (δ2, δ1)

= 1 − α

2
δ1 + 1 − α

2
δ2 + αδ12.

If R is such that ϕ(R) = �⊗ (ϕ(P), ϕ(Q)), then we must have:

ϕ(R) =
(
γ1 + (1 − θ)γ3

2

)
δ1 +

(
γ2 + (1 − θ)γ3

2

)
δ2 + θγ3δ12

= �⊗ (ϕ(P), ϕ(Q)) = 1 − α

2
δ1 + 1 − α

2
δ2 + αδ12.

Thus γ3 = α
θ

. Since γ3 ≤ 1, θ ≥ α.
(2 ⇒ 1)

Let us consider a first case where θ = α = 0. Then R = �⊗ (P, Q) is such that
ϕ(R) = �⊗ (ϕ(P), ϕ(Q)) and thus for all P, Q ∈ P , there exists R ∈ P such that
�⊗ (ϕ(P), ϕ(Q)) = ϕ(R).

Assume that θ ≥ α and θ > 0 and consider two subcases.

Case 1: λ′
2 + (1−θ)λ′

3
2 ≥ λ2 + (1−θ)λ3

2 (it corresponds to the case where ϕ(Q) ⊆ ϕ(P)).
Simple computations show that

�⊗ (a1δ1 + a2δ2 + (1 − a1 − a2)δ12, b1δ1 + b2δ2 + (1 − b1 − b2)δ12)

=
(

1 + α

2
a1 + 1 − α

2
b1

)
δ1 +

(
1 + α

2
a2 + 1 − α

2
b2

)
δ2

+
[(

1 + α

2

)
(1 − a1 − a2)+

(
1 − α

2

)
(1 − b1 − b2)

]
δ12

if a1 ≤ b1 and a2 ≤ b2.
If R is such that ϕ(R) = �⊗ (ϕ(P), ϕ(Q)), we must have

ϕ(R) =
(
γ1 + (1 − θ)γ3

2

)
δ1 +

(
γ2 + (1 − θ)γ3

2

)
δ2 + θγ3δ12

= �⊗ (ϕ(P), ϕ(Q))

=
(

1 + α

2
a1 + 1 − α

2
b1

)
δ1 +

(
1 + α

2
a2 + 1 − α

2
b2

)
δ2

+
[(

1 + α

2

)
(1 − a1 − a2)+

(
1 − α

2

)
(1 − b1 − b2)

]
δ12

where a1 = λ1+ 1−θ
2 λ3, a2 = λ2+ (1−θ)

2 λ3, b1 = λ′
1+ 1−θ

2 λ′
3 and b2 = λ′

2+ (1−θ)
2 λ′

3.
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Therefore, we have:

γ1 + (1 − θ)γ3

2
= 1 + α

2
a1 + 1 − α

2
b1

γ2 + (1 − θ)γ3

2
= 1 + α

2
a2 + 1 − α

2
b2

θγ3 =
(

1 + α

2

)
(1 − a1 − a2)+

(
1 − α

2

)
(1 − b1 − b2),

which leads to

γ1 = 1 + α

2
λ1 + 1 − α

2
λ′

1

γ2 = 1 + α

2
λ2 + +1 − α

2
λ′

2

γ3 =
(

1 + α

2

)
λ3 +

(
1 − α

2

)
λ′

3,

which are three values between 0 and 1. In fact, when Q ⊆ P , there always exists R
such that ϕ(R) = �⊗ (ϕ(P), ϕ(Q)) as soon as θ > 0. R is simply:

R =
(

1 + α

2

)
P +

(
1 − α

2

)
Q.

Case 2: λ2 + (1−θ)λ3
2 ≥ λ′

2 + (1−θ)λ′
3

2 .
Simple computation gives that

�⊗ (a1δ1 + a2δ2 + (1 − a1 − a2)δ12, b1δ1 + b2δ2 + (1 − b1 − b2)δ12)

=
(

1 + α

2
a1 + 1 − α

2
b1

)
δ1 +

(
1 − α

2
a2 + 1 + α

2
b2

)
δ2

+
[(

1 + α

2

)
(1 − a1 − b2)+

(
1 − α

2

)
(1 − b1 − a2)

]
δ12

if a1 ≤ b1 and a2 ≥ b2.
If R is such that ϕ(R) = �⊗ (ϕ(P), ϕ(Q)), then we must have

ϕ(R) =
(
γ1 + (1 − θ)γ3

2

)
δ1 +

(
γ2 + (1 − θ)γ3

2

)
δ2 + θγ3δ12

= �⊗ (ϕ(P), ϕ(Q))

=
(

1 + α

2
a1 + 1 − α

2
b1

)
δ1 +

(
1 − α

2
a2 + 1 + α

2
b2

)
δ2

+
[(

1 + α

2

)
(1 − a1 − b2)+

(
1 − α

2

)
(1 − b1 − a2)

]
δ12

where a1 = λ1+ 1−θ
2 λ3, a2 = λ2+ (1−θ)

2 λ3, b1 = λ′
1+ 1−θ

2 λ′
3 and b2 = λ′

2+ (1−θ)
2 λ′

3.
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To show that there exists R, we first show that we can find γ3 such that 1 ≥ γ3 ≥ 0
and such that

θγ3 =
(

1 + α

2

)
(1 − a1 − b2)+

(
1 − α

2

)
(1 − b1 − a2).

Then we must have:

γ3 = 1

2

[
λ3 + λ′

3 + α

θ
(λ′

1 − λ1 + λ2 − λ′
2)

]
.

Since λ′
1 + 1−θ

2 λ′
3 ≥ λ1 + 1−θ

2 λ3 and λ2 + (1−θ)λ3
2 ≥ λ′

2 + (1−θ)λ′
3

2 we have:

λ′
1 − λ1 ≥ 1 − θ

2

(
λ3 − λ′

3

)

λ2 − λ′
2 ≥ 1 − θ

2

(
λ′

3 − λ3
)

and thus

λ′
1 − λ1 + λ2 − λ′

2 ≥ 0.

Therefore γ3 ≥ 0.
On the other hand, since θ ≥ α,

γ3 ≤ 1

2

[
λ3 + λ′

3 + λ′
1 − λ1 + λ2 − λ′

2

] = [
λ2 + λ3 + λ′

1 + λ′
3 − 1

] ≤ 1.

That means that we can always find a γ3 that fits for the size of the probability
interval �⊗ (ϕ(P), ϕ(Q)).

It remains to be shown that we can find γ1 and γ2 that can adjust for the margins. Let
χ be the size of the probability interval�⊗ (ϕ(P), ϕ(Q)). Once χ is fixed, and thus
γ3 = χ

θ
, we can find γ1 and γ2 values such that ϕ(R) = τδ1 + (1 − χ − τ) δ2 + χδ12

for any τ ∈
[
(1−θ)

2
χ
θ
, 1 − χ

θ
+ (1−θ)

2
χ
θ

]
.

On the other hand, the weight on δ1 in the decomposition of �⊗ (ϕ(P), ϕ(Q)) is
equal to 1+α

2

(
λ1 + 1−θ

2 λ3
) + 1−α

2

(
λ′

1 + 1−θ
2 λ′

3

)
with

χ = 1

2

[
θ

(
λ3 + λ′

3

) + α(λ′
1 − λ1 + λ2 − λ′

2)
]
.

For χ fixed, to minimize τ ′ = 1+α
2

(
λ1 + 1−θ

2 λ3
) + 1−α

2

(
λ′

1 + 1−θ
2 λ′

3

)
, we have to

consider λ1 = λ′
1 = 0. Then

χ = 1

2

[
θ

(
λ3 + λ′

3

) + α(λ′
3 − λ3)

]
,
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while

τ ′ = 1 + α

2

1 − θ

2
λ3 + 1 − α

2

1 − θ

2
λ′

3

= 1 − θ

2

1

2

(
λ3 + λ′

3 + α(λ3 − λ′
3)

)

= 1 − θ

2

1

2

1

θ

(
θ

(
λ3 + λ′

3

) + α(λ′
3 − λ3)+ α

(
θ(λ3 − λ′

3)− (λ′
3 − λ3)

))

= (1 − θ)

2

χ

θ
+ 1 − θ

2

1

2

α

θ
(1 − θ)(λ′

3 − λ3).

Since we have also λ′
1 + 1−θ

2 λ′
3 ≥ λ1 + 1−θ

2 λ3, then τ ′ ≥ (1−θ)
2

χ
θ

: for a fixed χ , the
lowest weight on δ1 that can be observed for � ⊗ (ϕ(P), ϕ(Q)) can be obtained by
some γ1 and γ2. Using a similar proof, the same result holds for the lowest weight on
δ2 that can be observed for �⊗ (ϕ(P), ϕ(Q)), which means that the highest weight
on δ1 that can be observed for � ⊗ (ϕ(P), ϕ(Q)) can also be obtained by some γ1
and γ2.

Therefore, there exists R such that ϕ(R) = �⊗ (ϕ(P), ϕ(Q)).
(2 ⇔ 3)

Let us consider {p1} , {p2} ⊆ �({1, 2}). To prove the equivalence, it is sufficient
to prove the equivalence between

θ ≥ α ⇔ �⊗ (ϕ({p1}), ϕ({p2})) ⊆ �⊗ (ϕ(co
{

p1, p2
}
), ϕ(co

{
p1, p2

}
))

Let p1 = λ1δ1 + λ2δ2, p2 = λ′
1δ1 + λ′

2δ2 and suppose without loss of generality that
λ1 ≤ λ′

1.
We have that co

{
p1, p2

} = λ1δ1 + λ′
2δ2 + (

λ′
1 − λ1

)
δ12 and thus

�⊗ (ϕ(co
{

p1, p2
}
), ϕ(co

{
p1, p2

}
) = ϕ(co

{
p1, p2

}
)

=
(
λ1 + (1 − θ)

(
λ′

1 − λ1
)

2

)
δ1 +

(
λ2 + (1 − θ)

(
λ′

1 − λ1
)

2

)
δ2

+ θ (
λ′

1 − λ1
)
δ12.

On the other hand, we have that

�⊗ (ϕ({p1}), ϕ({p2})) = �⊗ (λ1δ1 + λ2δ2, λ
′
1δ1 + λ′

2δ2)

=
(
λ1 + (1 − α)

(
λ′

1 − λ1
)

2

)
δ1

+
(
λ2 + (1 − α)

(
λ′

1 − λ1
)

2

)
δ2 + α

(
λ′

1 − λ1
)
δ12
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Then

�⊗ (ϕ(P), ϕ(Q)) = �⊗ (δ1, δ2)

=
(

1 − α

2

)
δ1 +

(
1 − α

2

)
δ2 + αδ12.

Thus �⊗ (ϕ({p1}), ϕ({p2})) ⊆ �⊗ (ϕ(co
{

p1, p2
}
), ϕ(co

{
p1, p2

}
)) iff

λ1 + (1 − α)
(
λ′

1 − λ1
)

2
≥ λ1 + (1 − θ)

(
λ′

1 − λ1
)

2

λ2 + (1 − α)
(
λ′

1 − λ1
)

2
≥ λ2 + (1 − θ)

(
λ′

1 − λ1
)

2
α

(
λ′

1 − λ1
) ≤ θ

(
λ′

1 − λ1
)

and thus iff θ ≥ α.

A.7 Proof of Proposition 5

It is obvious that (i i) implies (i). We show the converse implication. Assume that (i)
holds. This implies, for all P, Q ∈ P,�⊗ (ϕ(P), ϕ(Q)) = ϕ(co(P ∪ Q)). Observe
that, since ϕ(P) ⊆ P for all P , we have ϕ({p}) = {p} for all p ∈ �(�). Thus we
have �⊗ ({q}, ϕ(Q)) = ϕ(Q) for all q ∈ Q. This implies � = �12. Given this, (i)
reduces to co(ϕ(P) ∪ ϕ(Q)) = ϕ(co(P ∪ Q)) for all P, Q ∈ P . Now, assume there
is P ∈ P such that ϕ(P) 	= P . Then, since ϕ(P) ⊆ P , there exists p ∈ P such
that p /∈ ϕ(P). But then (i) implies co(ϕ(P) ∪ {p}) = ϕ(co(P ∪ {p})) = ϕ(P), a
contradiction.
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