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1. Introduction

The literatures on the measurement of inequality and risk have been inexorably intertwined
since the publication of the seminal articles of Atkinson [1] and Rothschild and Stiglitz [36]
in the September 1970 issue of the Journal of Economic Theory. Both of these articles are con-
cerned with the comparative evaluation of distributions of a single variable. For Atkinson, income
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distributions are compared in terms of their relative inequality, whereas for Rothschild and
Stiglitz, random variables are compared in terms of their relative riskiness. While motivated by
different economic problems, their analyses share a common formal structure, which has permit-
ted results obtained using one framework to be used in the other. These two articles have provided
the foundation for an extensive literature that has refined, extended, and applied their results.

This symposium illustrates many of the new directions that research on inequality and risk is
taking today. In order to place the symposium articles in context, we first provide an overview of
the most relevant background results, focusing primarily, but not exclusively, on the contributions
of Atkinson [1], Atkinson and Bourguignon [2,3], and Rothschild and Stiglitz [36].1 In Sections 2
and 3, respectively, we consider the comparative evaluation of inequality and risk for univariate
and multivariate distribution functions.2 In Section 4, we discuss functional forms that have been
proposed for summary measures used to evaluate inequality and risk. We then introduce each of
the symposium articles in Sections 5, 6, and 7. Eight of these articles extend the stochastic dom-
inance theorems presented in Sections 2 and 3 in novel ways. They are discussed in Section 5.
Five articles provide axiomatizations of new functional forms for the analysis of inequality, risk,
and welfare. They are discussed in Section 6. The other two articles consider issues related to
inequality aversion and risk aversion. They are discussed in Section 7.

2. Univariate comparative evaluations of inequality and risk

Atkinson [1] has considered a number of criteria for regarding one income distribution to
exhibit less inequality than a second. Similarly, Rothschild and Stiglitz [36] have considered a
number of criteria for regarding one distribution of random variables to be less risky than a sec-
ond. These criteria are referred to as dominance criteria. In each of these articles, the dominance
criteria that are considered are shown to be equivalent to each other. By stripping the models
of their economic interpretations, it is easy to see that the dominance criteria used in both of
these articles are equivalent to each other. This formal equivalence allows us to provide a unified
review of the Atkinson and Rothschild–Stiglitz equivalence theorems.

In this section, we consider univariate distributions on Ω = [0, ω̄], interpreted as being either
distributions of random variables or of income. Distributions are evaluated using the function
W : Ω → R that assigns the value

W(X) =
∫
Ω

U(ω)dF(ω) (1)

to the distribution X, where F is the (cumulative) distribution function for X. When X is a
random variable, W(X) is the expected utility of a decision-maker who evaluates X using the
utility function U . When X is an income distribution, W(X) can be interpreted as being the value
assigned to X by a utilitarian social welfare function that uses the utility function U to convert
income into an interpersonally-comparable measure of well-being.3 In this case, the decision-

1 In focusing our overview in this way, we are neglecting many important contributions to the issues we consider,
including earlier antecedents in the economics, mathematics, and statistics literatures to some of the results we discuss.

2 In the inequality literature, it is more common to say “one-dimensional” and “multidimensional” instead of “univari-
ate” and “multivariate.” In order to provide a unified account of the literatures on inequality and risk, we employ the latter
terminology.

3 Atkinson interprets (1) as an additively separable social welfare function and does not require U to be interpreted as
a utility function.
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maker can be thought of as being a social planner. The social planner uses the same utility
function for all individuals and it need not be anyone’s actual utility function.

Let X and Y be two univariate distributions. The corresponding distribution functions are F

and G, respectively. Their means are μF and μG. The Atkinson and Rothschild–Stiglitz domi-
nance criteria all regard distributions with the same distribution function as being equivalent, so
we shall define these criteria in terms of distribution functions. In the case of income distribu-
tions, this amounts to assuming that all permutations and replications of an income distribution
are regarded as being equivalent.

For income distributions with the same mean, F can be regarded as exhibiting no more in-
equality than G if all inequality-averse social planners weakly prefer F to G. Analogously, for
random variables with the same mean, F can be regarded as being weakly less risky than G if
all risk-averse expected utility maximizers weakly prefer F to G. These dominance criteria are
special cases of the following stochastic dominance relation: F stochastically dominates G if∫

Ω

U(ω)dF(ω) �
∫
Ω

U(ω)dG(ω) for all U ∈ U , (2)

where U is a class of real-valued functions on Ω . Different evaluators agree that distributions
should be compared using the additively-separable evaluation function in (2), but differ in the
functions U that they use to perform the evaluation. This dominance criterion only ranks the
distributions being compared if there is unanimous agreement on the part of all evaluators whose
U functions are drawn from the class U . Rothschild and Stiglitz considered the class Uc of all
concave functions on Ω and Atkinson considered the smaller class Uic of all increasing concave
functions on Ω . If (2) holds with U = Uic , then F second-order stochastic dominates G.4

For random variables, concavity of U corresponds to risk aversion on the part of the decision-
maker. In this case, F second-order stochastic dominates G if every expected utility maximizer
who is risk averse and who prefers higher values of the outcome ω weakly prefers F to G. For
income distributions, concavity of U corresponds to inequality aversion on the part of the social
planner. With this interpretation of the model, F second-order stochastic dominates G if every
utilitarian social planner who is inequality averse and who regards utility to be increasing in
income weakly prefers F to G.

As we have noted, the stochastic dominance criterion used by Rothschild and Stiglitz is∫
Ω

U(ω)dF(ω) �
∫
Ω

U(ω)dG(ω) for all U ∈ Uc. (3)

In order for (3) to be satisfied, F and G must have the same mean. It is well known that (3) is
equivalent to∫

Ω

U(ω)dF(ω) �
∫
Ω

U(ω)dG(ω) for all U ∈ Uic and μF = μG. (4)

See, for example, Müller and Stoyan [34, Theorem 1.5.3]. Thus, Rothschild and Stiglitz are
comparing distributions according to second-order stochastic dominance. For fixed mean com-
parisons, (4) is the stochastic dominance criterion used by Atkinson.

Rothschild and Stiglitz have shown that (3) is equivalent to the following integral conditions:

4 If U is the set of all increasing functions on Ω , then (2) defines first-order stochastic dominance.
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ω∫
0

F(t) dt �
ω∫

0

G(t) dt for all ω ∈ [0, ω̄) and μF = μG. (5)

Recall that the Lorenz curve at t ∈ [0,1] plots the proportion of the total amount of ω associated
with the bottom t% of the values of ω (measured as a fraction of 1). Let LF and LG denote the
Lorenz curves for F and G, respectively. The distribution function F weakly Lorenz dominates
the distribution function G if the Lorenz curve for F lies nowhere below the Lorenz curve for G.
Atkinson has shown that the integral conditions (5) are equivalent to requiring that F weakly
Lorenz dominates G and that F and G have the same mean. Formally,

LF (t) � LG(t) for all t ∈ [0,1] and μF = μG. (6)

Thus, for equal mean comparisons, defining “less risky” or “less unequal” using Lorenz domi-
nance is equivalent to defining these concepts in terms of second-order stochastic dominance.

Informally, a mean-preserving spread of a random variable takes mass from the center of the
distribution and adds it to the tails in such a way that the mean is unaffected. Rothschild and
Stiglitz provided formal definitions of a mean-preserving spread for distributions that are either
discrete or have densities. They showed that if G is obtained from F by a sequence of mean-
preserving spreads, then the integral conditions (5) are satisfied. However, they were only able to
establish a partial converse to this result: if F and G satisfy the integral conditions, then G can
be obtained from F to an arbitrary degree of approximation by a sequence of mean-preserving
spreads. More precisely, if F and G satisfy the integral conditions, then there exist two sequences
of discrete distributions Fn and Gn converging to F and G respectively such that for each n, Gn

differs from Fn by a finite number of mean-preserving spreads.
An exact equivalence result for arbitrary distribution functions on Ω can be obtained using the

more general definition of a mean-preserving spread due to Machina and Pratt [28]. With their
definition, G differs from F by a mean-preserving spread if μF = μG and there exist ω′,ω′′ ∈ Ω

with ω′ � ω′′ such that (a) G has at least as much mass as F on every open subinterval of [0,ω′)
and on every open subinterval of (ω′′, ω̄] and (b) G has no more mass than F on every open
subinterval of (ω′,ω′′). Note that with this definition, F differs from itself by a mean-preserving
spread. Conditions (a) and (b) are equivalent to requiring that (a′) G − F is increasing on [0,ω′)
and on (ω′′, ω̄] and (b′) G − F is decreasing on (ω′,ω′′). See Müller and Stoyan [34, p. 28]. The
integral conditions (5) are equivalent to:

G can be obtained from F by a sequence of mean-preserving spreads. (7)

Thus, if (7) is used to define what it means for F to be less risky than G, then this concept
of “less riskiness” is equivalent to those defined using second-order stochastic dominance and
Lorenz dominance.

The distribution function F differs from the distribution function G by an equalizing transfer
if and only if G differs from F by a mean-preserving spread. Thus, (7) can be restated as:

F can be obtained from G by a sequence of equalizing transfers. (8)

In the income inequality literature, including in Atkinson’s article, equalizing transfers, not
mean-preserving spreads (disequalizing transfers), are used as a criterion for determining when
one distribution function is no more unequal than a second.

For distributions of income for a finite population, a Pigou–Dalton transfer is a transfer of in-
come from a richer to a poorer person that does not exceed the difference in their initial incomes.
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By allowing the size of the transfer to be either zero or the difference in the two incomes, this
definition includes the cases of a null transfer and a permutation of the two incomes. A Pigou–
Dalton transfer is an equalizing transfer. Hardy et al. [21, Lemma 2, p. 47] have shown that for
two distributions X and Y with the same means, X weakly Lorenz dominates Y (i.e., F weakly
Lorenz dominates G) if and only if X can be obtained from Y by a finite number of Pigou–Dalton
transfers.

Rothschild and Stiglitz also considered regarding one random variable to be at least as risky
as a second if the former can be obtained from the latter by adding zero-conditional-mean noise.
In terms of the distribution functions F and G, G is equal to F plus noise if there exists a pair
of jointly distributed random variables (X,Z) on Ω × [−ω̄, ω̄] with E[Z | ω] = 0 for all ω ∈ Ω

such that F and G are the distribution functions of X and X + Z, respectively. Note that if G

is equal to F plus noise, then F and G have the same mean. The distribution function F can be
regarded as being weakly less risky than the distribution function G if

G is equal to F plus noise. (9)

This concept of “less riskiness” is equivalent to those defined using second-order stochastic dom-
inance, Lorenz dominance, and mean-preserving spreads.

To summarize, we have seen that (3), (4), (5), (6), (7), (8), and (9) are all equivalent dominance
criteria for comparing distribution functions with common means. In defining the last three of
these dominance conditions, appeal is made to the existence of sequences of distributions with
certain properties. Explicit constructions of these sequences have been provided by Rothschild
and Stiglitz and by Machina and Pratt, thereby permitting these criteria to be implemented in
practice.

We have only considered comparing a single pair of distribution functions. On the set of all
distribution functions with a given mean, these dominance criteria generate a partial order (i.e.,
a reflexive, transitive, and antisymmetric binary relation) on this set.5

Atkinson also briefly considered variable-mean comparisons. In this case, his stochastic dom-
inance condition is∫

Ω

U(ω)dF(ω) �
∫
Ω

U(ω)dG(ω) for all U ∈ Uic, (10)

which is simply (4) without the requirement that μF = μG. He notes that (10) implies that
μF � μG. Conversely, if both μF � μG and F weakly Lorenz dominates G, then (10) holds. An
exact equivalence can be obtained using generalized Lorenz curves. For all t ∈ [0,1], the value
of the generalized Lorenz curve for the distribution F is

GLF (t) = μF LF (t). (11)

The distribution F weakly generalized Lorenz dominates the distribution G if

GLF (t) � GLG(t) for all t ∈ [0,1]. (12)

This dominance criterion is equivalent to (10). See, for example, Shorrocks [39, p. 6].

5 There are other dominance criteria that are equivalent to the ones considered here. See Marshall et al. [29] and Müller
and Stoyan [34].
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3. Multivariate comparative evaluations of inequality and risk

The economics literature on multivariate inequality and risk builds on the seminal articles of
Atkinson and Bourguignon [2,3] and Kolm [25]. For multivariate distributions, less inequality or
risk may be associated with less dispersion (as in the univariate case) or with less positive depen-
dence between the variables. Kolm focused primarily on the first of these phenomenon, whereas
Atkinson and Bourguignon took both into account, but focused on the second. Atkinson and
Bourguignon restricted attention to the bivariate case, as has much of the subsequent economics
literature that considers interdependence between the variables. In Atkinson and Bourguignon
[2], both variables have symmetric roles, but they are treated asymmetrically in Atkinson and
Bourguignon [3].6

Let X = (X1, . . . ,Xd) and Y = (Y1, . . . , Yd) be multivariate distributions on Ω = Ω1 × · · · ×
Ωd , where Ωi = [0, ω̄i], i = 1, . . . , d . In the inequality context, these variables are indicators
of well-being, such as income and health status. In the case of risk, the variables are typically
monetary returns from risky activities that are not perfectly substitutable, such as investing in
different financial assets. The corresponding joint (cumulative) distribution functions are F and
G, respectively. Let F̄ and Ḡ denote the corresponding survival functions. When d = 1, F̄ =
1 − F and Ḡ = 1 − G, but, in general, these equalities do not hold for d � 2. The marginal
distribution functions of Xi and Yi are denoted by Fi and Gi . A Fréchet class is a set of joint
distribution functions with the same marginals. Letting ω = (ω1, . . . ,ωd) and defining Ω as
above, the evaluation function W in (1) and the stochastic dominance criterion in (2) can be
applied to multivariate distributions. As in Section 2, W can be interpreted as being a utilitarian
social welfare function or as an expected utility functional.

For bivariate distributions, Atkinson and Bourguignon [2] analyzed first-order and second-
order stochastic dominance when the variables are either substitutes or complements. We restrict
attention to substitutable variables. Atkinson and Bourguignon assumed that the class of func-
tions U used for their stochastic dominance comparisons are continuously differentiable to any
required degree and that the distribution functions F and G have densities, which we denote by
f and g.

Atkinson and Bourguignon’s criterion for F to first-order stochastic dominate G when d = 2
is that (2) holds for all U in

UAB1 = {U ∈ U | U1,U2 � 0; U12 � 0}.
The restrictions on the first partials of U require U to be nondecreasing in each variable. The
nonpositive cross-partial restriction captures the assumption that the variables are substitutes:
the marginal contribution of one variable is nonincreasing in the value of the other variable.

For x, y ∈ R
d , let x ∨ y = (max{x1, y1}, . . . ,max{xd, yd}) and x ∧ y = (min{x1, y1}, . . . ,

min{xd, yd}). The real-valued function U on Ω is submodular (or L-subadditive) if

U(x) + U(y) � U(x ∨ y) + U(x ∧ y) for all x, y ∈ Ω. (13)

If U is twice differentiable, then U is submodular if and only if Uij (x) � 0 for all i, j ∈ {1, . . . , d}
and all x ∈ Ω . See Müller and Stoyan [34, Theorem 3.9.3]. F dominates G according to the
nondecreasing submodular order if (2) holds with U chosen to be the class of all nondecreasing
submodular functions. In the bivariate case, this is the class UAB1 .

6 See Joe [23] and Müller and Stoyan [34] for detailed discussions of dependence concepts and multivariate stochastic
orders. Trannoy [42] provides a good introduction to multivariate inequality dominance.
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F dominates G according to the lower-orthant order if

F(ω) � G(ω) for all ω ∈ Ω (14)

and F dominates G according to the upper-orthant order if

F̄ (ω) � Ḡ(ω) for all ω ∈ Ω. (15)

If both (14) and (15) hold, then F dominates G according to the concordance order, in which
case G is said to be more concordant than F . If G is more concordant than F , then F and G

have the same marginals. See Meyer and Strulovici [30, ft. 23].
In the bivariate case, Atkinson and Bourguignon have shown that (a) F dominates G accord-

ing to the nondecreasing submodular order if and only if (b) F dominates G according to the
lower-orthant order.7 Moreover, it follows from Müller and Stoyan [34, Theorem 3.8.2] that if
F and G are bivariate and belong to the same Fréchet class (i.e., they have the same marginal
distribution functions), then the nondecreasing submodular order, the lower-orthant order, the
upper-orthant order, and the concordance order are equivalent.8 As we have noted, if F and G

are comparable according to the concordance order, then they belong to the same Fréchet class.
For discrete bivariate distributions X and Y , the distribution function G is obtained from F

by a positive 2-rearrangement if there exist ω′
i and ω′′

i with ω′
i < ω′′

i for i = 1,2 and ε > 0 such
that

g(ω1,ω2) =
⎧⎨
⎩

f (ω1,ω2) + ε, if (ω1,ω2) = (ω′
1,ω

′
2) or (ω′′

1 ,ω′′
2);

f (ω1,ω2) − ε, if (ω1,ω2) = (ω′′
1 ,ω′

2) or (ω′
1,ω

′′
2);

f (ω1,ω2), otherwise.

(16)

Positive 2-rearrangements were introduced by Hamada [20]. Such a rearrangement transfers mass
from the off-diagonal to the diagonal corners of the rectangle defined by the points (ω′

1,ω
′
2),

(ω′′
1 ,ω′

2), (ω′
1,ω

′′
2), and (ω′′

1,ω′′
2). This kind of transfer leaves the marginal distributions un-

changed, but increases the correlation between the two variables. Epstein and Tanny [11, Theo-
rem 1] and Tchen [41, Theorem 1] have shown that if F and G belong to the same Fréchet class,
then G is more concordant than F if and only if G can be obtained from F by a finite sequence
of positive 2-rearrangements.

The five partial orderings of bivariate distribution functions obtained using the nondecreasing
submodular order, the lower-orthant order, the upper-orthant order, the concordance order, and
sequences of positive 2-rearrangements provide alternative ways of assessing the positive de-
pendence between distribution functions. In general, these partial orderings do not coincide, but,
as we have seen, they are equivalent when the distributions are discrete and belong to the same
Fréchet class.

Atkinson and Bourguignon’s criterion for F to second-order stochastic dominate G when F

and G are bivariate is that (2) holds for all U in

UAB2 = {U ∈ U | U1,U2 � 0; U12 � 0; U11,U22 � 0; U112,U221 � 0; U1122 � 0}.
The restrictions on the second-order own partials require the social welfare function to exhibit
inequality aversion with respect to each variable taken separately. Hence, equalizing transfers

7 As they note, the sufficiency of (b) for (a) was established by Hadar and Russell [19, Theorem 5.7].
8 If d = 2, then F̄ (x1, x2) = 1 − F1(x1) − F2(x2) + F(x1, x2), which is why the lower- and upper-orthant orders are

equivalent for bivariate distributions that belong to the same Fréchet class. For d > 2, the survival function cannot be
determined from the distribution function and the marginals.
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of either variable are welfare improving. Moyes [31,32] has identified the welfare-improving
transformations that correspond to the restrictions on the third and fourth derivatives.

For bivariate distributions, Atkinson and Bourguignon have shown that necessary and suffi-
cient conditions for F to stochastically dominate G for the class of utility functions UAB2 are
that

ωi∫
0

Fi(t) dt �
ωi∫

0

Gi(t) dt for all ωi ∈ Ωi, i = 1,2, (17)

and
ω1∫

0

ω2∫
0

F(s, t) ds dt �
ω1∫

0

ω2∫
0

G(s, t) ds dt for all ω ∈ Ω. (18)

These conditions are multivariate analogues of the univariate integral conditions in (5) but with-
out any restrictions on the means of the variables.9 In (17), the integrals are applied to the
marginal distributions of each variable, whereas in (18), they are applied to the joint distribu-
tion functions. If F and G belong to the same Fréchet class, then (17) is automatically satisfied
because the two distributions have the same marginals.

In Atkinson and Bourguignon [3], distributions of two variables are also considered, but now
they are treated asymmetrically. The first variable is income and the second is some measure of
need. They assume that the measure of need can take on a fixed finite number of values, which are
indexed by j = 1, . . . ,m in decreasing order of need. They further assume that the distributions
being compared all have the same marginals for the need variable. Let pj , j = 1, . . . ,m, be
the proportion of the population in the j th of the need categories. As in the univariate case,
incomes are distributed on Ω = [0, ω̄]. Now let X = (X1, . . . ,Xm) and Y = (Y1, . . . , Ym) be
two distributions of income on Ω , where the j th component is the distribution for the j th need
subgroup. The corresponding (cumulative) distribution functions are F = (F1, . . . ,Fm) and G =
(G1, . . . ,Gm), respectively. Let U = (U1, . . . ,Um) be the m-tuple of utility functions for income
of the m subgroups. In this setting, the stochastic dominance condition (2) can be rewritten as

m∑
j=1

pj

∫
Ω

Uj (ω)dFj (ω) �
m∑

j=1

pj

∫
Ω

Uj (ω)dGj (ω) for all U ∈ U . (19)

The requirement that subgroups with higher indices are less needy is formalized by requiring
that

U ′
j (ω) − U ′

j+1(ω) � 0 for all ω ∈ Ω, j = 1, . . . ,m − 1. (20)

For their second-order dominance result, Atkinson and Bourguignon further assume that

U ′′
j (ω) − U ′′

j+1(ω) � 0 for all ω ∈ Ω, j = 1, . . . ,m − 1. (21)

In other words, (20) requires that the marginal utility of income U ′
j (ω) is nondecreasing in need

for any income ω, with (21) additionally requiring that the marginal utility difference U ′
j (ω) −

U ′
j+1(ω) is nondecreasing in income.

9 They can also be viewed as being the multivariate counterparts of the generalized Lorenz dominance conditions
in (12).
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Atkinson and Bourguignon’s criteria for F to first-order and second-order stochastic domi-
nate G in incomes are that (19) is satisfied for all U in

UAB3 = {
U ∈ U

∣∣ (20) holds and U ′
j � 0, j = 1, . . . ,m

}
and

UAB4 = {
U ∈ U

∣∣ (20) and (21) hold and U ′
j � 0,U ′′

j � 0, j = 1, . . . ,m
}
,

respectively. In addition to (20), UAB3 only requires utility to be nondecreasing in income for
each subgroup, whereas UAB4 additionally requires the social planner to be inequality averse
for each need subgroup and for (21) to hold. For both of these classes of utility functions, it is
welfare improving to transfer income from a less needy person to someone who is more needy if
they have the same initial incomes. With the second class, it is also welfare improving to make a
transfer of income from a richer to a poorer person if they are equally needy.

Atkinson and Bourguignon have shown that their first-order and second-order stochastic
dominance criteria for incomes are equivalent to dominance criteria that are applied sequen-
tially to the different needs subgroups.10 A necessary and sufficient condition for (19) to hold for
all U in UAB3 is that

k∑
j=1

pjFj (ω) �
k∑

j=1

pjGj (ω) for all ω ∈ Ω, k = 1, . . . ,m, (22)

whereas for all U in UAB4 ,

k∑
j=1

pj

ω∫
0

Fj (t) dt �
k∑

j=1

pj

ω∫
0

Gj(t) dt for all ω ∈ Ω, k = 1, . . . ,m, (23)

is necessary and sufficient. In (22), starting with the neediest group, we sequentially add the next
neediest group’s incomes until all of the groups have been considered and require the resulting
distribution for F to first-order stochastic dominate that for G in each step in this sequence.
In (23), in each step, the resulting distribution for F is required to generalized Lorenz dominate
that for G. For this reason, the latter criterion is known as sequential generalized Lorenz dom-
inance. In the last step, these criteria are simply the univariate first-order stochastic dominance
and generalized Lorenz criteria applied to all incomes.

4. Functional forms

In addition to analyzing inequality dominance criteria, Atkinson [1] proposed a method for
constructing a summary index of inequality from a social welfare function and used this con-
struction to develop what is now known as the Atkinson class of inequality indices. It is for these
contributions that Atkinson’s article is best known today.

Atkinson used the function W in (1) as a social welfare function. The equally-distributed-
equivalent income associated with X for the social welfare function W is the income ΞW(X)

defined implicitly by

10 For a good introduction to sequential dominance criteria, see Lambert [26, Section 3.6].
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∫
Ω

U
(
ΞW(X)

)
dF(ω) =

∫
Ω

U(ω)dF(ω). (24)

If everybody had the income ΞW(X), then the level of social welfare would be the same as
with X. ΞW(X) is the social welfare analogue of the certainty equivalent in the theory of risky
decision-making. Using the function ΞW , Atkinson defined the inequality index IW : Ω → R

associated with W by setting

IW (X) = 1 − ΞW(X)

μ(X)
, (25)

where μ(X) is the mean of X. IW (X) measures the fraction of total income that could be de-
stroyed without affecting the level of social welfare if incomes were equalized. Provided that
U ∈ Uic, this index takes on values between 0 and 1, attaining its minimum when incomes are
equally distributed.

The procedure used in (25) to construct an inequality index from a social welfare function
can be used even if W does not take the particular form given in (1) provided that the equally-
distributed-equivalent income function is well defined. This procedure was independently pro-
posed by Kolm [24] and later popularized by Sen [38], so an inequality index constructed in this
way is called an Atkinson–Kolm–Sen inequality index.

A relative index of inequality is one that is invariant to a proportional scaling of all incomes.
For IW to be a relative index of inequality, ΞW must be homogeneous of degree 1 or, equivalently,
W must be homothetic. As Atkinson has noted, if U ∈ Uic , then this requirement is satisfied if
and only if ΞW has the mean of order r form given by:

ΞW(X) =
{

[∫
Ω

ωr dF(ω)]1/r , if r � 1 and r �= 0;
exp[∫

Ω
ln(ω)dF (ω)], if r = 0,

(26)

where r � 1 is a scalar that is inversely related to the degree of inequality aversion. For a finite
population of n individuals with income distribution x = (x1, . . . , xn), (26) may be rewritten as:

ΞW(x) =
{ [ 1

n

∑n
i=1 xr

i ]1/r , if r � 1 and r �= 0;∏n
i=1 x

1/n
i , if r = 0.

(27)

An inequality index of the form obtained by substituting (26) or (27) into (25) is an Atkinson
inequality index.

The generalized Gini inequality indices introduced by Weymark [43] are defined using an
equally-distributed-equivalent income function that is a weighted sum of rank-ordered incomes.
For an income distribution x = (x1, . . . , xn), let x̃ denote a permutation of x in which the compo-
nents of x have been ordered in a nonincreasing way. The equally-distributed-equivalent income
function for a generalized Gini inequality index is given by

ΞW(x) =
n∑

i=1

ai x̃i (28)

for all x in the domain of W , where ai � 0 for all i = 1, . . . , n. Homogeneity of degree 1 of
ΞW requires that

∑n
i=1 ai = 1. Inequality aversion is equivalent to requiring the income weights

in (28) to be nondecreasing. By setting ai = (2i − 1)/n2 and substituting (28) into (25), we
obtain the Gini index of relative inequality. By reinterpreting x as the vector of state-dependent
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returns for a discrete random variable, (28) is the certainty-equivalent function for a decision-
maker who uses the discrete version of the rank-dependent expected utility function introduced
by Yaari [45].

For a continuous distribution X on Ω , the analogue of (28) is:

ΞW(X) =
∫
Ω

φ
(
1 − F(ω)

)
dF(ω), (29)

where φ : [0,1] → R is continuous and nondecreasing. If φ is differentiable, then (29) may be
rewritten as:

ΞW(X) =
∫
Ω

φ′(1 − t)QX(t) dt, (30)

where

QX(t) = inf
x∈R

{
F(x) > t

}
(31)

is the quantile function for the distribution X. See Galichon and Henry [15]. The values of
φ′(1 − t) correspond to the weights in (28). Inequality or risk aversion is equivalent to requiring
φ to be concave.

These rank-dependent objective functions exhibit two important properties. First, they pre-
serve first-order stochastic dominance, so higher outcomes are preferred to smaller ones. Second,
if the decision-maker is indifferent between comonotonic income distributions or vectors of re-
turns, then he is also indifferent between convex combinations of them, a property known as
comonotonic independence.11

5. New directions in stochastic dominance analysis

The first eight contributions to the symposium develop new stochastic dominance equivalence
theorems. The first two consider univariate stochastic dominance and the other six consider mul-
tivariate stochastic dominance.

Chakravarty and Zoli [7] suppose that the outcome variables only take on nonnegative integer
values from 0 to m. This restriction is natural in applications such as comparing distributions
of indices of social exclusion, health status, and literacy. For a fixed, finite population, they
consider distributions x and y whose means need not be equal and establish the equivalence of
five dominance conditions. Of particular note is that they show that x weakly generalized Lorenz
dominates y if and only if x is weakly preferred to y using any inequality-averse generalized Gini
welfare measure or, equivalently, if x̃ can be obtained from ỹ by applying a sequence of rank-
preserving transformations that move each position’s outcome closer to its final value. Explicit
constructions of these sequences are provided.

Le Breton et al. [27] consider income distribution functions for two subgroups (e.g., men and
women) and investigate the extent to which one of these groups is discriminated against rela-
tive to the other. To do this, they construct first-order and second-order discrimination curves
that show the extent to which the comparison distribution function Fc is skewed towards lower
incomes relative to the reference distribution function Fr . For fixed Fr , it is shown that the

11 The vectors ω′ and ω′′ are comonotonic if (ω′ − ω′ )(ω′′ − ω′′) � 0 for all i, j .

i j i j



1324 T. Gajdos, J.A. Weymark / Journal of Economic Theory 147 (2012) 1313–1330
second-order discrimination curve for Fc lies nowhere below that of Gc (i.e., Fc exhibits less
second-order discrimination than Gc) if and only if for every income x, there is less discrim-
ination with Fc than with Gc according to the Gastwirth [16] discrimination index truncated
at x. When Fr is the uniform distribution, this equivalence reduces to that between the stochastic
dominance condition (10) and generalized Lorenz dominance (12).

Moyes [32] is a slightly revised English translation of Moyes [31]. The latter article has played
an influential role in the development of multivariate inequality dominance criteria by French-
speaking economists, but it is little known outside that community. Ostensibly, the purpose of this
article is to extend the equivalence theorems of Atkinson and Bourguignon [3] to allow for the
marginal distributions of needs to have different means in the distributions being compared, but
it does much more than that. In their informal discussion, Atkinson and Bourguignon [2,3] have
related the restrictions they have imposed on their classes of utility functions to various transfer
principles, as we have done in our discussion of the classes UAB3 and UAB4 . Moyes explicitly
identifies the welfare-improving transformations for bivariate distributions that correspond to the
restrictions imposed on the utility functions by Atkinson and Bourguignon in their two articles.
He does this both for the case in which the needs variable is ordinal and for the case in which it
is cardinal. These transformations apply to one or both of the two variables and take a number of
forms—augmentations, permutations, single transfers, and composite transfers.

Gravel and Moyes [18] further explore the case considered by Moyes [31,32] in which one of
the two variables is cardinal and transferable (e.g., income) and the other is ordinal and nontrans-
ferable (e.g., health status). Their objective is to establish an equivalence between the partial
orders generated by (a) the utilitarian unanimity criteria for a given class of utility functions,
(b) sequences of elementary transformations that are welfare improving, and (c) implementable
criteria that allow one to identify what distributions can be ordered. In the univariate case, Lorenz
dominance is an example of what they mean by an implementable criterion. In their main result,
Gravel and Moyes identify the class of utility functions and set of transformations needed to
establish this kind of equivalence theorem when implementability is defined using the ordered
poverty-gap criterion introduced by Bourguignon [6]. With this criterion, a weighted sum of the
aggregate income shortfalls from the poverty line for each needs category is used to compare
distributions, where the weights are the marginal densities of each needs group and the poverty
lines are needs-group specific. Two distributions are only ordered if this comparison is invariant
to the poverty lines used subject to the proviso that they are nondecreasing in need.

For bivariate distributions, Muller and Trannoy [35] develop sufficient conditions for second-
order stochastic welfare dominance comparisons using a compensation approach that supposes
that one continuous, cardinally-measurable variable (e.g., income) can be used to make transfers
in order to compensate for unfavorable realizations of the needs variable (e.g., health status),
which is also assumed to be cardinally measurable, but can be either discrete or continuous. In
terms of their terminology, the former is the compensating attribute of well-being and the latter
is the compensated attribute. They do not require the marginal distributions of the needs vari-
able to be fixed. The compensation principles that Muller and Trannoy consider are formalized
as restrictions on the classes of utility functions used in the utilitarian unanimity criterion. Al-
though, by construction, the two variables play asymmetric roles, by allowing the needs variable
to be continuous, Muller and Trannoy are able to consider restrictions on the utility functions of
the kind employed by Atkinson and Bourguignon [3] in the framework used by Atkinson and
Bourguignon [2], thereby integrating the two approaches. Of particular note is that Muller and
Trannoy have generalized the sequential generalized Lorenz dominance criterion to allow for
continuous distributions of the needs variable.
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Decancq [10] develops multivariate generalizations of the bivariate equivalences for positive
2-rearrangements when the distributions functions being compared are discrete and belong to the
same Fréchet class. Suppose that ω′ and ω′′ are two d-vectors with ω′ � ω′′ that differ in k � 2
components. The set of all 2k combinations of the components of these two vectors define the
vertices of a k-dimensional hyperbox. A vertex in this hyperbox is odd if the number of com-
ponents in which it differs from ω′ is odd; otherwise it is even. Decancq considers two different
ways of shifting mass between even and odd vertices, both of which coincide with a positive
2-rearrangement when k = 2. In one case, the ability to obtain distribution G from distribution
F using a sequence of such rearrangements is equivalent to G dominating F according to the
lower-orthant order; whereas with the other, the equivalence is with the upper-orthant order. The
ability of obtaining G from F using either kind of sequence is equivalent to the concordance
order.

Meyer and Strulovici [30] also consider dependence orders for multivariate distributions. As
they note, for bivariate distributions, however one defines positive dependence, the distributions
X and Y are positively dependent if and only if −X and Y are negatively dependent. This sym-
metry breaks down in higher dimensions. As a consequence, the analysis of dependence concepts
when there are more than two dimensions is inherently more difficult than in the bivariate case.
Symmetry breaking is also present in Decancq’s article, with one of his kinds of rearrangements
resulting in more positive dependence when k is even and less when k is odd.

In addition to the supermodular order and the concordance order, Meyer and Strulovici con-
sider three new partial orders: greater weak association, the convex-modular order, and the
dispersion order. The first considers every possible partition of the variables into two subsets and
compares distributions in terms of the correlation between scalar aggregates of these subsets. The
second compares distributions using the Rothschild and Stiglitz [36] concept of riskiness applied
to additively separable scalar aggregates of all of the variables. The third compares distributions
in terms of the dispersion of the distribution functions of their order statistics, which turns out
to be equivalent to comparing riskiness in the Rothschild–Stiglitz sense of the sum of indica-
tor functions at each point in the support of the distributions. For bivariate distributions, these
five orders coincide, whereas for four or more dimensions, they are strictly ranked. For three
dimensions, four are strictly ranked and two are equivalent.

In the univariate case, the stochastic dominance criterion (3) used by Rothschild and Stiglitz
[36] identifies distribution X as being more risky than Y if the latter is preferred by all ex-
pected utility maximizers who are risk averse, that is, who have concave utility functions. As we
have seen, this is equivalent to saying that X can be obtained from Y by a sequence of mean-
preserving spreads or by adding noise to the latter distribution. Müller and Scarsini [33] note that
the addition of noise introduces the possibility that the decision-maker ends up with less than
his initial wealth and, by the univariate equivalence theorem, this fear of loss is equivalent to the
concavity restriction on the utility function. With multivariate distributions, it is possible to add
zero-conditional-mean noise without ever having a loss in all dimensions. In their contribution
to this symposium, Müller and Scarsini argue that in the multivariate case, this fear of loss is
best captured by restricting attention to aversion to the addition of zero-conditional-mean noise
that results in possible gains or losses in all variables. This restriction is captured by applying the
multivariate version of the stochastic dominance criterion in (2) to the class of what are known
as inframodular utility functions. Müller and Scarsini identify a multivariate generalization of a
mean-preserving transfer called an inframodular transfer and show that all expected utility max-
imizers with an inframodular utility function prefer distribution X to Y if and only if the former
can be obtained from the latter by a sequence of such transfers. With multidimensional intervals
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being defined using vector dominance, an inframodular transfer can be thought of as transferring
mass from both sides of an interval to within it.12

6. Axiomatizations of new functional forms

The next five contributions to the symposium provide axiomatizations of new functional forms
for the analysis of inequality, risk, and welfare.

Galichon and Henry [15] develop a multivariate extension of the rank-dependent expected
utility function (29) introduced by Yaari [45] for univariate risks. To do so, they first extend the
concepts of quantiles and comonotonicity to the multivariate framework. A generalized quantile
function is defined as the solution to a maximum correlation problem with respect to a reference
probability distribution μ on Ω . Two multivariate distributions X and Y are μ-comonotonic if
there exists a vector ω ∈ Ω distributed according to μ such that X and Y can be simultaneously
rearranged so as to achieve maximal correlation with ω. Galichon and Henry’s multivariate gen-
eralization of Yaari’s functional form evaluates distributions using a weighted sum of generalized
quantiles. This objective function satisfies natural multivariate extensions of first-order stochastic
dominance and comonotonic independence using the generalized quantiles and comonotonic-
ity concept defined using the reference distribution. Galichon and Henry also characterize risk
aversion in this framework and show that the reference distribution can be interpreted as being
equilibrium prices.

Surprisingly little attention has been devoted to the measurement of inequality when incomes
are uncertain. Notable exceptions are Ben-Porath et al. [4] and Gajdos and Maurin [14]. In a
framework in which incomes are state-contingent, Chew and Sagi [9] introduce and axiomat-
ically characterize a class of social welfare functions that is a one-parameter extension of the
class of inequality-averse generalized Gini equally-distributed-equivalent income functions ap-
plied to the distribution of mean incomes. The parameter φ is in [0,1). The generalized Ginis are
obtained when φ = 0. When φ > 0, there is a covariance term that results in the social welfare
function favoring uncertain income distributions for which, on average, an individual’s income
share is positively correlated with a measure of the other individuals’ incomes. This term cap-
tures a concern for ex post fairness, what Chew and Sagi call a preference for shared destinies.
Their social welfare functions also exhibit a preference for ex ante fairness and an aversion to
aggregate risk. Chew and Sagi also propose a way of a defining an equally-distributed-equivalent
income for uncertain income distributions and use it in combination with the procedure described
in (25) to identify the class of inequality indices that corresponds to their welfare measures.

Fleurbaey [12] has recently proposed a novel criterion for socially evaluating state-contingent
alternatives. His proposal employs the concept of an equally-distributed-equivalent income, but
applied to ex post utilities, not incomes. Specifically, his expected equally-distributed-equivalent
social welfare function evaluates risky social alternatives by first computing the ex post utility
us in state s that would result in the same level of ex post social welfare as the actual ex post
distribution of utilities if everybody had utility us and then taking a weighted sum of these values
for each state using the probabilities of the states as weights.

Grant et al. [17] provide an axiomatic characterization of this social welfare function using
a variant of the framework employed by Harsanyi [22] in his impartial observer theorem. An
observer who is stripped of knowledge about his identity has a preference over product lotteries,

12 For two d-vectors ω′ and ω′′ with ω′ � ω′′ , the hyperbox defined above whose vertices are obtained by taking all
combinations of the components of these two vectors is the multidimensional interval between ω′ and ω′′ .
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each of which consists of a lottery over possible personal identities and a lottery over possible
outcomes. The axioms in the characterization theorem specify properties of this preference. The
social welfare function employs a transform that converts any individual’s ex post utility into the
ex post utility of the observer. Grant et al. show that the concavity of the transform corresponds
to a particular concept of ex post inequality aversion.

The most common social welfare function for evaluating consumption (or income) streams in
an infinite horizon model is discounted utilitarianism, defined by setting

W(c1, c2, . . .) =
∑
i∈N

βt−1u(ct ), (32)

where ct is the consumption of generation t , u is the utility function used by the social planner,
and β ∈ (0,1) is the utility discount factor. This criterion has been criticized because it may
entail that earlier generations make large sacrifices for later ones that are significantly better off.
However, when there are nonrenewable resources, it may be the distant future generations who
are the ones who are worse off.

In order to overcome these kinds of intergenerational inequity, Zuber and Asheim [46] pro-
pose that the discounting in (32) be applied to ranks in the consumption (or, equivalently, utility)
stream, not dates. For consumption streams that can be rearranged in a nondecreasing order,
by reinterpreting t as the consumption rank (starting with the lowest consumption), (32) is a
rank-discounted utilitarian social welfare function. Such a function is an infinite-dimensional
extension of the generalized Gini functional form (28), with βt−1 being the weight attached the
t th lowest utility. Zuber and Asheim axiomatically characterize the class of such functions on the
domain of consumption streams that can be nondecreasingly reordered. Significantly, discounted
rank-discounted utilitarianism not only treats generations equally, it also satisfies a strong form
of the Pareto principle, thereby showing the compatibility of criteria on this restricted domain
that are incompatible on most domains considered in the literature on evaluating infinite con-
sumption streams. Zuber and Asheim show how to extend their welfare criterion to the set of all
consumption streams and axiomatize the resulting class of extended rank-discounted utilitarian
social welfare functions. They also identify the restrictions required for such a function to be
inequality averse and show how the choice of discount rate is related to inequality aversion. The
applicability of their approach is illustrated by investigating the properties of optimal policies in
two standard growth models.

Sprumont [40] is concerned with the construction of an inequality-averse social welfare order-
ing over allocations of commodities to individuals. For the most part, the social welfare orderings
(or functions) used to analyze issues related to inequality assume that the same utility function is
used to evaluate each person’s bundle. However, when there is more than one good, one would
expect individuals to have different preferences, in which case, it may seem natural to respect
these preferences when evaluating the social alternatives. Unfortunately, as Fleurbaey and Tran-
noy [13] have shown, for some patterns of preferences, the Pareto principle can conflict with
a multivariate generalization of the Pigou–Dalton transfer principle that regards a transfer of
commodities from someone who has more of every commodity to someone who has less to be
welfare improving.

Sprumont [40] argues that there are good reasons why individual preferences should not be
respected (e.g., they may be based on incorrect beliefs). However, he thinks that it is reasonable
to respect a weaker form of the Pareto principle in which one allocation is socially preferred to
a second if everybody agrees that each person’s bundle in the former is better than in the latter,
a property that he calls consensus. Sprumont introduces and axiomatically characterizes a class
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of social welfare orderings that satisfy this principle and a strong form of dominance aversion
that regards a reduction in the vector dominance of one individual’s bundle by another as a social
improvement. The social orderings in this class use a leximin procedure to extend the preferences
over commodity bundles on which there is consensus to an ordering over allocations.

7. Inequality aversion and risk aversion

Inequality aversion and risk aversion play a prominent role in many of the articles that have
been discussed in the preceding two sections. These issues are the focus of the analysis in the
final two contributions to the symposium.

Rothschild and Stiglitz [37] used the criteria for comparing risk discussed in Rothschild and
Stiglitz [36] to derive a number of comparative static results that sign the change in some eco-
nomic variable (such as the amount an individual saves) in response to an increase in risk. In
a similar vein, Bommier et al. [5] introduce a general model-free way of defining comparative
risk aversion and then use this definition to derive comparative static results on the impact of
increased risk aversion on savings behavior in a number of models of risky intertemporal choice.
They also use their definition to identify which of the standard classes of utility functions used
in the literature on risky intertemporal choice are well ordered in terms of risk aversion.

Bommier et al. restrict attention to preferences that exhibit different risk attitudes but coincide
when comparing deterministic outcomes. Their definition of comparative risk aversion begins
with a partial order of a set of lotteries interpreted as meaning “weakly riskier than.” In their
theorems, this partial order is required to be consistent with a (coarser) partial order that regards
one lottery to be riskier than a second if it is more “spread out” than a second in a precise sense.
One preference is more risk averse than a second if for any pair of lotteries �′ and �′′, �′ is
weakly preferred to �′′ by the second preference whenever �′ is weakly preferred to �′′ by the
first preference and �′ is weakly riskier than �′′. This definition generalizes the one introduced
by Yaari [44] in which the comparison lotteries �′′ are deterministic; that is, a preference exhibits
greater risk aversion if it has smaller certainty equivalents.

Chambers [8] investigates the relationship between inequality aversion and risk aversion in a
model of household decision-making. The individuals in the household have different attitudes
towards risk, but share common beliefs. An individual’s utility is measured by his certainty-
equivalent income and the household welfare function W is a function of these utilities. The
household also has a utility function UW defined over state-contingent aggregate household in-
comes. For each such bundle, the value of UW is the value of W that is achieved when the
aggregate income in each state is allocated to the individuals so as to maximize W . Chambers
regards one household welfare function as being more inequality averse than a second if any
deviation from equality of utility across individuals that the former prefers is also preferred by
the latter. Similarly, as in Yaari [44], one household utility function is regarded as being more
risk averse than a second if any deviation from equality of aggregate incomes across states that
the former prefers is also preferred by the latter. In his main theorem, Chambers shows that the
more inequality averse the household welfare function is, the more risk averse the household
utility function, thereby establishing a link between inequality aversion and risk aversion in this
framework.
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