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How Overconfidence Bias Influences Suboptimality in Perceptual
Decision Making
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3 Centre d’Economie de la Sorbonne, CNRS UMR 8174

4 CNRS and Paris School of Economics

In perceptual decisionmaking, it is often found that human observers combine sensory information and prior
knowledge suboptimally. Typically, in detection tasks, when an alternative is a priori more likely to occur,
observers choose it more frequently to account for the unequal base rate but not to the extent they should, a
phenomenon referred to as “conservative decision bias” (i.e., observers do not shift their decision criterion
enough). One theoretical explanation of this phenomenon is that observers are overconfident in their ability
to interpret sensory information, resulting in overweighting the sensory information relative to prior knowl-
edge. Here, we derived formally this candidate model, and we tested it in a visual discrimination task in
which we manipulated the prior probabilities of occurrence of the stimuli. We measured confidence in deci-
sions and decision criterion placement in two separate experimental sessions for the same participants (N=
69). Both overconfidence bias and conservative decision bias were found in our data, but critically the link
that was predicted between these two quantities was absent. Our data suggested instead that when informed
about the a priori probability, overconfident participants put less effort into processing sensory information.
These findings offer new perspectives on the role of overconfidence bias to explain suboptimal decisions.

Public Significance Statement
In detection tasks, humans are presented with evidence and must decide whether a target is present or
not, for example, whether there are dangerous items on X-ray images of luggage. When their prior
knowledge indicates that the target is likely to be present, they should adjust their decision criterion
such that they would require less evidence to detect the target. This study highlights that howwell people
adjust their decision criterion does not depend on their confidence in their ability to interpret the evi-
dence. The results suggest that people who are overconfident in their ability invest less effort in the
task when prior knowledge is available.

Keywords: overconfidence bias, perceptual decision making, suboptimality, signal detection theory,
conservative decision bias, sensitivity

Supplemental materials: https://doi.org/10.1037/xhp0001091.supp

Whether human observers can combine optimally multiple pieces
of information has been studied across modalities (e.g., Ernst &
Banks, 2002), over time (e.g., Yang & Shadlen, 2007), and between
individuals (e.g., Bahrami et al., 2010). In perceptual decision mak-
ing, it is often found that observers combine sensory information and

prior knowledge suboptimally (Rahnev & Denison, 2018).
Typically, in detection tasks, when an alternative is a priori more
likely to occur, observers choose it more frequently to account for
the unequal base rate but not to the extent they should. This phenom-
enon referred to as “conservative decision bias” (i.e., observers do
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not shift their decision criterion enough) has been observed with lab-
oratory tasks using basic visual decisions (Ackermann & Landy,
2015; Green & Swets, 1966; Murrell, 1977; Ulehla, 1966) but also
in experiments emulating real-world decisions such as the detection
of faulty products (Botzer et al., 2010, 2013; Chi & Drury, 1998), or
enemy targets (Wang et al., 2009).
To achieve a Bayes-optimal combination, observers must com-

bine the sensory information and the prior knowledge according to
its weight of evidence. For instance, when a medical doctor inspect-
ing a chest CT scan must decide whether a lung nodule is cancerous
or not, her decision should weigh this piece of sensory information
and her prior knowledge of the risk factors for lung cancer accord-
ingly. However, observers often behave as if they under-weigh
prior knowledge such that, for example, the doctor would be less
reluctant to decide that a lung nodule is cancerous among smokers
but not to the extent she should. Critically, in our example, there
is a fundamental difference between the risk factors for which the
weight of evidence is quantified objectively by epidemiologists
and the chest CT scan whoseweight of evidence depends on the doc-
tor. If the doctor overestimates her ability to distinguish between can-
cerous and benign lung nodules (e.g., “I am sure that this nodule has
a small size.”), she may rely less on the information provided by the
risk factor (e.g., “10% of smokers develop a lung cancer”) than what
is optimal.
In this paper, we ask whether conservative decision bias is caused

by overestimation of one’s own ability to process sensory informa-
tion. Several studies have found that observers overestimate the
accuracy of their decisions (i.e., they are overconfident) in signal
detection tasks including in the perceptual domain (Baranski &
Petrusic, 1994; Kvidera & Koutstaal, 2008; Massoni et al., 2014).
Here, we consider that overconfidence bias captures observers’ mis-
estimation of their ability to process sensory information. Such a link
between conservative decision bias and misestimation of the sensory
information has already been proposed (Ackermann & Landy, 2015;
Kubovy, 1977) but it has not been supported by direct empirical evi-
dence. We test this prediction experimentally in a perceptual task.
The hypothesized link between overconfidence bias and conser-

vative decision bias can be formally described within signal detec-
tion theory (SDT, Green & Swets, 1966), which provides a
framework for analyzing decisions between two options, and for dis-
tinguishing between the sensitivity of the observer to the sensory
information (d

′
), and the decision criterion of the observer (c) mea-

suring the amount of sensory evidence for which she is indifferent
between the two choice options. Theoretically, this criterion should
be affected by information about the a priori probability of occur-
rence of the choice options. Under this model, we can predict that if
an observer is overconfident (i.e., overestimates her own sensitivity),
she would also not adjust her response criterion optimally. Formally,
as detailed in the “Method” section, we should have

csubj = cideal
d

′

d
′
subj

,

where d
′
and d

′
subj denote the observer’s actual and perceived sensitiv-

ity, while cideal denotes the ideal decision criterion set by an observer
perfectly aware of her own sensitivity d

′
, and csubj denotes the crite-

rion that would be used by an observer relying on d
′
subj instead.

Intuitively, the equation means that the criterion set by the observer
should deviate from the ideal criterion by a factor that is the inverse

of her overconfidence bias, leading to a conservative decision bias if
she is overconfident (i.e., csubj/cideal, 1 if d

′
subj . d

′
).

We test this prediction experimentally in a visual discrimination
task by measuring in the same participants, but in distinct sessions,
both (a) confidence about decisions when the base rate is equal and
(b) criterion adjustments in response to unequal base rates. Briefly,
our participants (N= 69) had to identify which of two sets presented
on the computer screen contained more dots (see Figure 1) in two
experimental sessions conducted four days apart. Here, the dots
are visible enough but it is hard to identify which set has more
dots given the small difference in number of dots between the two
sets, and the short presentation time. In the confidence session,
after each decision participants indicated their confidence on a quan-
titative scale. In the cueing session, prior probability about the forth-
coming stimulus was given in the form of a symbolic cue. On each
trial, the stimulus was preceded by a symbolic cue indicating the cor-
rect side with 75% validity or by a neutral cue indicating that both
sides were equally likely. Before the task, the meaning and validity
of these symbolic cues were fully explained to participants, who
were instructed to optimally use both the cue and the stimulus infor-
mation to maximize their payoff. We then tested whether overconfi-
dence bias measured in the confidence session would relate to
conservative decision bias measured in the cueing session, as pre-
dicted by our model.

Method

Transparency and Openness

We report how we determined our sample size, all data
exclusions (if any), all manipulations, and all measures in the
study, and we follow JARS (Kazak, 2018). All data, analysis
codes, and research materials are available on the Open
Science Framework repository (https://osf.io/4qw9e/?view_
only=48bae1de632c4ff895cfa49743b41dfa). The experiment was
programmed using Psychotoolbox (Brainard, 1997) and MATLAB
8.3 (The Math Works, Inc., 2014). Data were analyzed using
MATLAB 8.3 (The Math Works, Inc., 2014), R package lme4

Figure 1
Experimental Paradigm

Note. Participants had to indicate which circle (left or right) contained
more dots. (A) In the cueing session, stimuli were presented after a neutral
or 75% valid cue that participants had to optimally use to make their deci-
sions. (B) In the confidence session, decisions were followed by confidence
judgments on an incentivized probability rating scale. See the online article
for the color version of this figure.
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(Bates et al., 2015; R Core Team, 2018), and JASP (JASP
Team, 2022). This study’s design and its analysis were not
pre-registered.

Experiment

A Priori Power Analysis and Participants

To test the hypothesized link between overconfidence bias and
conservative decision bias, our empirical strategy relied on evaluat-
ing the correlation between predicted and actual criteria across par-
ticipants (for more details about our strategy, see “Empirical
Strategy” section). Theoretically, if the hypothesized link holds
true, the predicted and actual criteria should perfectly positively cor-
relate. However, empirically, we aimed to detect an observable cor-
relation of 0.3. A priori power analysis performed with the GPower
software (Faul et al., 2007) indicated that the total sample size
required to detect a one-tailed correlation of Cohen’s medium effect
size r= 0.3 between two normally distributed variables, given a sig-
nificance level α= 0.05, and a statistical power level 1− β= 0,80 is
N= 67.
In total, 69 individuals (39 females; Mage= 23 years, SD= 2.5

years) were recruited through the Laboratory of Experimental
Economics of Paris. Participants received €13 for participating
plus an incentivized bonus described below. The data were collected
in 2014.

Ethic Statement

The study was conducted in line with the principles of the
Declaration of Helsinki. Written informed consent was obtained
from all participants before the experiment. No nominative/identify-
ing information was collected. No health information was collected
from participants other than gender and age. The research involved
negligible risks. In this situation, as per current French regulations,
ethics approval was not required, therefore no IRB was consulted
before conducting the study.

Stimuli and Task

Rather than collecting confidence judgments following each
decision made in the presence of cues, we decided to collect inde-
pendent measures to avoid two potential issues: (a) that asking
explicitly participants to evaluate and verbalize their confidence
in their decision might change how they would take into account
the cues in their decision process; and, (b) that the manipulation
of prior probabilities of occurrence of the stimuli (given in the
form of a symbolic cue) might alter how participants would eval-
uate their confidence in their decision. This would also allow us
to compare more directly our data with previous literature study-
ing confidence or cueing. The confidence and cueing sessions
took place 4 days apart and their order of presentation was
counterbalanced across participants. The experiment was run on
screens (resolution 1,024× 768) viewed at normal distance
(about 60 cm).
Importantly, in both sessions, participants were asked to perform

the same perceptual task with the same type of stimuli. On each
trial, after a 250 ms fixation cross, two sets of about 100 dots were
simultaneously presented for 700 ms, one on the left side and one
on the right side of the computer screen. Participants had to indicate

which set contained more dots, by pressing the corresponding arrow
(left or right arrow keys) on the keyboard. After the response, the
intertrial interval was jittered between 0.5 and 1.5 s. Participants
received no feedback about the accuracy of their decision.
Response times shorter than 200 ms or longer than 2,200 ms (from
stimulus onset) were discouraged by presenting a “too fast” or “too
slow” message on the screen.

Calibration

At the beginning of each session, and for each participant, stimu-
lus difficulty x (i.e., the difference in number of dots between the two
circles) was calibrated using a 2-down-1 up rule (Levitt, 1971) to
obtain 71% of “left” or “right” responses. Specifically, one circle
contained 100 dots while the other circle (the stimulus) contained
100+ x dots, and x decreased by one step size after two consecutive
correct responses and increased by one step size after one failure. In
order to obtain more precise estimates more rapidly, the step size was
reduced from 20 (an easy initial value) to 16, 8, 4, and 2 dots on tri-
als 12, 24, 60, and 80, respectively. In addition, to account for the
possibility that participants may be biased toward responding more
“left” or “right,” we used two independent and interleaved staircases
of 150 trials each, one adjusting the value for the left stimulus (xl)
and one for the right stimulus (xr). With these data, we estimated,
for each participant, a psychometric curve representing the propor-
tion of “left” responses as a function of the difference in number
of dots between the left and right circles, fitted with a cumulative
normal distribution. To obtain xl and xr, we took the difference in
number of dots for which the psychometric curve predicted a 70%
and 30% of “left” responses, rounded to its nearest integer and con-
verted to its absolute value. We then kept these values constant
across the session.

Symbolic Cueing Session

In this session, each trial started with a central cue presented for
250 ms, before the fixation cross. The cuewas either a triangle point-
ing to the left or the right side of the screen, indicating the correct
response with 75% validity (cue condition), or a diamond providing
no information (neutral condition). In the cue condition, 192 trials
(96 left cues, 96 right cues) indicated the correct response (75%
valid) and 64 trials (32 left cues, 32 right cues) indicated the
wrong response (25% invalid). In the neutral condition, the diamond
cue was followed by right and left correct responses equally often
(128 left, 128 right). Similarly to Rahnev et al. (2011), the trials in
the cue and neutral conditions were administered in 64 randomly
interleaved mini-blocks of eight trials, with each mini-block includ-
ing either predictive cues only (left and right, randomly interleaved
across trials), or only neutral cues. Each mini-block began with a 1 s
presentation of the cue(s) used in the forthcoming eight trials to
remind participants. At the beginning of the session, participants
were fully informed of the meaning of these cues and of the structure
of the blocks. They were instructed to use both the stimulus and the
cue to make the best possible decisions. Response accuracy was
incentivized: participants won 1 point if correct and lost 1 point if
incorrect, and points were converted to a bonus payment at the
end of the experiment, with 1 point= €0.02. A training phase
with feedback (96 trials) was included.
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Confidence Session

In the confidence session, both sides were a priori equally likely to
occur and no cue was presented. Each response was followed by a
confidence rating, in which participants indicated their subjective
belief that their response just given was correct, on a six steps
scale ranging from 50% confident (i.e., guess) to 100% confident,
in steps of 10%. Participants responded using the numerical keys
on the top-left of the keyboard. This confidence rating was incentiv-
ized using a probability matching rule (Massoni et al., 2014), which
is a variant of the Becker–DeGroot–Marschak rule (Becker et al.,
1964) classically used in experimental economics. The participant
is offered an exchange between his response and a lottery ticket
with a probability P of success. The number P is randomly deter-
mined on each trial (with a uniform distribution between 0 and 1)
and compared to the confidence response. If P is greater than the
confidence, then the participant’s reward is determined by the
lottery. If not, it is determined by the accuracy of the response.
The mechanism was presented to participants as a way to maximize
their earnings by providing accurate confidence ratings. Instructions,
examples, and a training phase with feedback (40 trials) were
included to make sure that participants understood the mechanism.
Participants then completed 512 trials in the session.

Running Memory Span Task

Both the cueing and confidence sessions started with a standard
running memory span task (Broadway & Engle, 2010; Conway
et al., 2005; Pollack et al., 1959). Details for this task (which will
only be used as a control measure in our final analyses) are presented
in the online supplemental materials (Methods S1).

Computational Approach

The SDT Model Linking Overconfidence Bias and
Conservative Decision Bias

We shall now describe the relation between overconfidence bias
and conservative decision bias that we should expect under SDT,
illustrated in Figure 2. Following SDT, let us assume that a given
state of nature (i.e., A= the right circle has more dots vs. B= the
left circle has more dots) generates an internal sensory signal
(denoted x) that the observer compares with a decision criterion
(denoted c). The observer responds that the state of nature is “A”
when the internal sensory signal is above c. Furthermore, across tri-
als, both states generate normally distributed values of x, with equal
variance σ2 and with means μA and μB. Without loss of generality
and for simplicity, we assume that μA and μB are symmetric around
0, and that σ= 1. Defining the observer’s sensitivity d

′ = |μA− μB|,
the probability distribution of x, given the true state of the nature
(either A or B) is thus given by

P(x|A) = N(x, + d ′/2) = 1����
2p

√ e
−
1
2
(x− d ′/2)2

(1a)

P(x|B) = N(x, − d ′/2) = 1����
2p

√ e
−
1
2
(x+ d ′/2)2

. (1b)

The logarithm of the likelihood ratio of the sensory signal is then

LS(x) = log
P(x|A)
P(x|B)

( )
= − 1

2
x− d

′

2

( )2

+ 1
2

x+ d
′

2

( )2

= d
′
x (2)

Assume also that the observer has access to some information about
the a priori probability of occurrence of A and B. To maximize
expected accuracy, the observer should set the criterion such that
she responds “A” when the posterior probability that A is present
is greater than the posterior probability that B is present. By
Bayes’ s rule, this decision rule can be written as a function of the
log-odds prior (LP) and the log likelihood ratio of the sensory signal
(LS(x)). The ideal observer who perfectly estimates her own sensi-
tivity responds according to the sign of the decision variable DV
(x) defined as follows:

Say “A” when:

DV(x) = log
P(A|x)
P(B|x)

( )
= log

P(A)
P(B)

( )
+ log

P(x|A)
P(x|B)

( )

= LP+ LS(x) = LP+ d
′
x . 0

(3a)

On the other hand, the nonideal observer who misestimates
her own abilities uses a subjective value d

′
subj instead of d

′
to

evaluate the sensory signal, leading to the likelihood ratio

LSsubj(x) = log
Psubj(x|A)
Psubj(x|B)

( )
, where Psubj denotes the observer’s

Figure 2
Signal Detection Theory Model

Note. (A) Probability distributions of internal signal x for the ideal
observer and the nonideal observer. The ideal observer (blue curves) per-
fectly estimates her internal signal, whereas the nonideal observer (blue
dotted curves) overestimates the quality of her internal signal resulting in
overconfidence bias (i.e., d

′
subj . d

′
). (B) Log Likelihood Ratio for a

given internal signal x for the ideal observer (full orange line) and the non-
ideal observer (dotted orange line). The ideal observer sets her decision cri-
terion when LS(x)= − LP, whereas the nonideal observer sets her
decision criterion when LSsubj(x)= -LP resulting in conservative decision
bias (i.e., csubj /cideal, 1) in the case of overconfidence. See the online arti-
cle for the color version of this figure.
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subjective probability of observing an internal signal x. In such a
case, the nonideal observer responds according to the sign of the fol-
lowing decision variable:

Say “A” when:

DVsubj(x) = log
Psubj(A|x)
Psubj(B|x)

( )
= LP+ LSsubj(x)

= LP+ d
′
subj

d ′ (d
′
x) . 0

(3b)

It follows from Equation 3b that if the observer is overconfident

d
′
subj

d ′ . 1

( )
she overweighs the sensory information, whereas if

she is underconfident
d

′
subj

d ′ , 1

( )
she underweights it.

Using Equations 3a and 3b, the optimal decision criterion set by
the ideal observer and the nonideal observer are defined, respec-
tively, as follows:

DV(cideal) = 0 ⇔ LP+ d
′
cideal = 0 ⇔ cideal = − 1

d ′ LP (4a)

DVsubj(csubj) = 0 ⇔ LP+ d
′
subjcsubj = 0 ⇔ csubj

= − 1
d

′
subj

LP (4b)

Rearranging Equations 4a and 4b, we obtain the fundamental pre-
diction of our theoretical model defined as follows:

csubj = cideal
d ′

d ′
subj

(5)

Equation 5 states that the criterion set by the nonideal observer
should deviate from the ideal criterion by a factor that is the
inverse of her overconfidence bias, leading to a conservative deci-
sion bias if she is overconfident (i.e., csubj/cideal, 1 if dsubj

′
. d

′
)

and a liberal decision bias if she is underconfident (i.e., csubj/cideal
. 1 if d

′
subj , d

′
).

Empirical Strategy

To test this model empirically, we first estimate the right-hand side
of Equation 5. As detailed below, cideal is estimated during the

cueing session, and the ratio
d

′

d
′
subj

is estimated from the confidence

session thus the right-hand side of this equation can be fully deter-
mined. Then, we compare the predicted criterion (csubj) to the actual
criterion used by participants in the cueing session (cobs).
Estimating Overconfidence Bias From the Confidence

Session. In the confidence session, the prior probabilities of the
two states were equal therefore LP= 0. The link between subjective
and objective probabilities follows from Equations 3a and 3b:

log
P(A|x)
P(B|x)

( )
= d

′

d
′
subj

log
Psubj(A|x)
Psubj(B|x)

( )
(6)

We grouped the trials into subsets according to the confidence
reported (i.e., 50%, 60%, 70%, 80%, 90%, or 100%) and response
(i.e., left, or right), and, for each subset, we evaluated the subjective
probability Psubj (i.e., the average confidence) and the objective
probability P (i.e., the actual frequency) of a given state.
Converted in log-odds, these quantities provide an estimation of

log
Psubj(A|x)
Psubj(B|x)

( )
and log

P(A|x)
P(B|x)

( )
, respectively. According to

Equation 6, overconfidence bias (as defined in the model) can thus
be estimated by the inverse of the coefficient of the linear regression
of subjective probabilities over objective probabilities (both
expressed in log-odds) (see Figure S1 in the online supplemental
materials).

Predicting the Decision Criterion in the Cueing Session. In
the cueing session, the prior probabilities of the two states varied
on a trial-by-trial basis. For each participant, we computed the
observed (cobs), ideal (cideal), and predicted (csubj) criterion adjust-
ment in response to unequal base rates. To evaluate the observed cri-
terion adjustment, we fitted with maximum likelihood an SDT
model to the data from the cueing session, separately for each partic-
ipant. This fitted model had four parameters: a constant sensitivity d

′

and a decision criterion for each of the three types of cues (left, right,
neutral). To estimate the SDT parameters, we chose arbitrarily to
define the state of nature A (i.e., right circle has more dots) as the
Signal and the state of nature B (i.e., left circle has more dots) as
the Noise. We expected the criterion for the left cue trials to be pos-
itive (i.e., corresponding to answering “right” less often than “left”)
and the criterion for the right cue trials to be negative (i.e., corre-
sponding to answering “right” more often than “left”). We used
the semi-distance between the estimated criteria for the left cue
and right cue trials as a measure of the actual criterion adjustment
(cobs= (cobs,left− cobs,right)/2) for each participant. The ideal crite-
rion adjustment (for the left cue trials) is given by the relation
LP+ d

′
cideal= 0, with LP= log(.25/.75) in the case of a 75%

valid cue. The predicted criterion adjustment (for the left cue trials)
was derived using Equation 5. Note that we assumed here that over-
confidence bias (i.e., the ratio d

′
subj/d

′
estimated in the confidence

session) was identical between the confidence session and the cueing
session. Finally, we also computed the value of the ideal and
observed decision criterion in log-odds with cideal,LO= cideal d

′ =
− LP and cobs,LO= cobs d

′

Reliability. We evaluated the reliability of all the measures that
we correlated at the individual level (see Table S1 in the online sup-
plemental materials), in terms of internal consistency for measures
administered in one session and test–retest reliability for measures
repeated in the two sessions. We used permutation-based split-half
Spearman–Brown coefficients and intraclass correlation coefficients
to estimate internal consistency and test–retest reliability respec-
tively, as recommended by Parsons et al. (2019). Internal consis-
tency of the two measures that we compared to test our model
(i.e., the actual criterion and the predicted criterion) was quite
good (Mdn= 0.9305, 95% HDI= [0.8066, 0.9524] and Mdn=
0.8910; 95% HDI= [0.8186, 0.9361], respectively).

Results

To anticipate our results, we first established both overconfidence
bias and conservative decision bias in our participants. Then, we
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evaluated the hypothesized link between these two measures, but
critically found no evidence for this link. We thus explored whether
overconfidence bias would affect perceptual performance in the cue-
ing session in other ways and found that overconfident participants
exhibited a lower sensitivity following a 75% valid cue. Model com-
parison then clearly confirmed that this model was much more prob-
able given our data. An intuition for the mechanism underlying this
result is provided in the discussion.

Model-Based Measure of Overconfidence Bias

We first evaluated participants’ confidence in their perceptual
decisions. Raw overconfidence bias, computed from the confidence
session as the average confidence minus accuracy (Figure 3A) was
largely heterogeneous across participants (M= 0.08, SD= 0.11),
but highly significant at the group level, T-test vs. 0: t(68)= 6.42,
p, .001. We also calculated overconfidence bias with our model-

based measure (see Figure S1 in the online supplemental materials),
in which we used confidence ratings to quantify participants’ subjec-
tive estimate of their own sensitivity (d

′
subj), which can be compared

to the actual sensitivity (d
′
). We found that subjective estimations of

sensitivity (Figure 3B) were twice as large as actual sensitivities
(ratio d

′
subj/d

′
: M= 2.18, SD= 1.31). This model-based measure

of overconfidence bias was significant at the group level, T-test vs.
1: t(68)= 7.53, p, .001, and highly correlated with the initial
raw overconfidence bias across participants (r= 0.85, p, .001)
(Figure 3C).

Model-Based Measure of Conservative Decision Bias

We then turned to the cueing session to quantify conservative
decision bias by assessing how observers combined the symbolic
cue information with their sensory information. Descriptive statis-
tics are reported in Table 1.

Figure 3
Overconfidence Bias in the Confidence Session

Note. (A) Average confidence and average accuracy for each participant. (B) Subjective and objective sensitivity for each participant. (C) The relation between
our model-based measure of overconfidence bias (i.e., ratio subjective sensitivity over objective sensitivity) and raw overconfidence bias (i.e., average confi-
dence minus average accuracy). Each dot is a participant (N= 69). In panels A and B, the black dotted line corresponds to the 45° line. See the online article for
the color version of this figure.

Table 1
Descriptive Statistics in the Cueing Session

Response rate
right

Accuracy All
trials

Accuracy valid
cue trials

Accuracy invalid
cue trials

SDT parameters with MLE SDT parameters

c d′ c d′

Neutral cue 0.508 (0.066) 0.729 (0.058) — — −0.029 (0.203) 1.242 (0.344) −0.029 (0.204) 1.264 (0.364)
Left cue 0.253 (0.118) 0.764 (0.057) 0.840 (0.103) 0.535 (0.207) 0.494 (0.481) 1.242 (0.344) 0.497 (0.496) 1.213 (0.460)
Right cue 0.743 (0.108) 0.768 (0.060) 0.841 (0.098) 0.549 (0.190) −0.477 (0.427) 1.242 (0.344) −0.479 (0.440) 1.213 (0.426)

Note. Shown are, per cue (neutral, left predictive, and right predictive): response rate right, average accuracy rate, average accuracy rate conditional on valid and
invalid cues, equal variance SDT parameters fitted withmaximum likelihood (the fitted model had four parameters: a constant sensitivity, and a decision criterion
that was free to vary between the three conditions (neutral cue, left predictive cue, and right predictive cue), equal variance SDT parameters estimated for each cue
condition and averaged across participants’ point estimates, with decision criterion c=−0.5× [Z(H )+ Z(F )] and sensitivity d

′ = Z(H )− Z(F ) where Z(H ) and
Z(F ) are the inverse of the cumulative Gaussian distribution function for the Hit (H ) and False-alarm (F ) rates. Standard deviations are reported between
parentheses.
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Overall, participants benefited from the cue information: their
performance was higher after a predictive cue compared to a neu-
tral cue; predictive: M= 0.77, SD= 0.05; neutral: M= 0.73, SD=
0.06; accuracy gain: M= 0.04, SD= 0.04, t(68)= 7.12, p, .001
(Figure 4A). Nonetheless, when compared to an ideal observer
optimally integrating the cue while maintaining sensitivity constant
(for which accuracy would be given by P(B)Φ(cideal+ d

′
/2)+ P(A)

(1−Φ(cideal -d
′
/2)) where Φ is the cumulative of the standard nor-

mal distribution), participants were not fully benefiting from the cue,
as revealed by a significant accuracy gap; ideal accuracy: M= 0.80,
SD= 0.03, accuracy gap: M= 0.04; SD= 0.03, t(68)= 9.07,
p, .001 (Figure 4A). To evaluate how participants used the cue
to adjust their responses, we also compared how participants
placed their decision criterion, relative to the ideal placement
(Figure 4B). Ideally, participants should have adjusted their deci-
sion criteria to incorporate the information provided by the cue; in
log-odds: cideal,LO= log(0.75/0.25) ≈ 1.1. However, they only
adjusted their criteria half-way through this ideal value (cobs,LO:
M= 0.58, SD= 0.48), resulting in a significant under-adjustment
(i.e., conservative decision bias); ratio observed criteria over
ideal criteria: M= 0.53, SD= 0.44, T-test vs. 1: t(68)=−8.99,
p, .001.

Discarding the Conservative Decision Bias Mechanism

We then examined whether overconfidence bias and conservative
decision bias would relate, as expected under the SDT model (see
“Method” section). At the group level, the overall amount of conser-
vative decision bias appeared in line with the overall amount of over-
confidence bias in our data: the criterion adjustment observed (cobs)
(M= 0.49, SD= 0.39) largely overlapped with the criterion adjust-
ment (csubj) (M= 0.58, SD= 0.34) that was predicted from partici-
pants’ overconfidence bias (Figure 5A), and we could not reject at

the 5% significance level the hypotheses that csubj and cobs have
the samemedian (Wilcoxon rank sum test: p= .106) or the same dis-
persion (Ansary–Bradley test: p= .07).

To our surprise, however, the prediction of the SDT model did
not hold when examining the covariations of predicted and
actual criteria across participants. Using a one-sided Pearson cor-
relation analysis based on the alternative hypothesis that the pre-
dicted criterion csubj has a positive correlation with the observed
criterion cobs, we could not reject the null hypothesis at a 5%
significance level (r= .16, p= .094; and r= .0705,
p-value= .272 after we removed one outlier identified when
plotting the data, see Figure 5B). With Bayesian testing, using
the statistical software JASP (JASP Team, 2022), this was
accompanied by a Bayes factor BF0+ suggesting that there is
moderate evidence supporting the lack of a relationship between
these two quantities. Specifically, assuming that any positive
Pearson correlation coefficient ρ was equally likely a priori
(i.e., using a Stretched beta prior width κ= 1, truncated to
allow only values between 0 and 1), BF0+ indicated that the
data were 3.807 more likely under the null H0 (i.e., ρ= 0)
than the alternative directional hypothesis H+ (i.e.,
r � U[0, 1]) (see Figure S2A in the online supplemental mate-
rials). Furthermore, we performed a robustness check to assess
the sensitivity of our findings to a wide range of priors (see
Figure S2B in the online supplemental materials). We found
that the Bayes factors BF0+ consistently indicated moderate evi-
dence for H0 over H+ for prior widths κ greater than or equal to
0.66 and indicated only anecdotal evidence for H0 for lower
prior widths (i.e., corresponding to assigning more mass to
small correlation coefficients). This analysis suggests that we
can discard at least a medium-to-large correlation, and that a
larger sample might be needed to evaluate the possible presence
or absence of a small correlation.

Figure 4
Performance in the Cueing Session

Note. (A) Average performance across participants, in the presence of a neutral cue (no-cue condition), a 75%
valid cue (cue condition), and for ideal observers perfectly integrating the 75% valid cue (ideal condition). Error
bars represent SEM. (B) Observed criterion (cobs) and ideal criterion (cideal) for each participant (N= 69). The
black dotted line corresponds to the 45° line. See the online article for the color version of this figure.
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Exploratory Analysis of the Sensitivity Loss Mechanism

Since overconfidence bias did not lead to conservative decision
bias, we conducted an exploratory analysis to evaluate whether over-
confidence bias might affect performance in the cueing session via
sensitivity instead. We asked whether overconfidence bias could
induce a reduction in perceptual sensitivity in the 75% valid cue con-
dition relative to the neutral condition, referred to as “sensitivity
loss.” This would be consistent with the idea that overconfident par-
ticipants invested less effort into processing the stimuli when offered
a predictive cue, perhaps because they would believe that they were
already doing well enough.
To evaluate this possibility, we estimated separate values of sen-

sitivity (d
′
) and decision criterion (c) for each cue condition (right,

left, and neutral) (see Table 1). Although there was no systematic
change in sensitivity in the 75% valid cue condition relative to the
neutral cue (average of d

′
right and d

′
left:M= 1.21, SD= 0.39; neutral:

M= 1.26, SD= 0.36; difference: M=−0.05, SD= 0.28,
t(68)=−1.51, p= .13) we observed a large heterogeneity across
participants (Figure 6A) which was a potential leverage to under-
stand the relation between overconfidence bias and performance.
We thus evaluated how this sensitivity change was correlated with
raw overconfidence bias and found a significant negative correlation
between the two measures (r=−.265, p= .028). In other words,
more overconfident participants tended to exhibit lower sensitivity
when given a predictive cue than in the no- cue condition
(Figure 6B), although we should point out that overconfidence
bias only explained about 7% of the variance in sensitivity change.
We note that if overconfident participants have a lower sensitivity in

the 75% valid cue condition, the acceleration of responses (measured
as the difference in median response times between neutral and pre-
dictive cues) was not correlated with overconfidence bias (r=−.07,
p= .57). Therefore, sensitivity loss in overconfident participants
was not the result of a speed-accuracy tradeoff.

To ensure that this result was not due to individual differences in
global motivation to engage in the experiment, we evaluated the
relation between overconfidence bias and sensitivity change in a
regression with control variables. To control for motivation to do
well in the perceptual task, we used the calibrated difference in
the number of dots (i.e., the difference in the number of dots
between the left and right circles to calibrate stimulus difficulty
per participant) averaged across both sessions, which we believe
would be greater for less motivated participants. To control for
motivation to do well in the confidence task, we included the res-
olution of confidence as well as the median of response times of
confidence ratings, which we believe would be lower for less moti-
vated participants. In addition, we controlled for cognitive abilities
by taking the average value of the two working memory scores
measured at the beginning of each session (see Methods S1 in
the online supplemental materials). Adding such control variables
did not change our results (see Table S2 in the online supplemental
materials), suggesting that global motivation is not a confounding
factor. However, we noted that the internal consistency of sensitiv-
ity change was poor (Mdn= 0.0612, 95% HDI= [−0.3036,
0.3478]), due to the low reliability of d

′
right and d

′
left (Mdn=

0.5188, 95% HDI= [0.3285, 0.6622] and Mdn= 0.5627, 95%
HDI= [0.3973, 0.6940], respectively) whereas the reliability of
d

′
neutral was acceptable (Mdn= 0.7771, 95% HDI= [0.6924,

Figure 5
Overconfidence Bias and Conservative Decision Bias

Note. (A) Distribution of the adjustment of decision criteria in the presence of a symbolic cue, as observed empir-
ically (cobs, black line), predicted theoretically for ideal observer (cideal, blue line) and for overconfident participants
(csubj, blue dotted line). (B) The relation between the criteria observed empirically (cobs) and the criteria predicted for
overconfident participants (csubj). Each dot is a participant (N= 69). The red line represents the best-fitting regres-
sion when all observations are included. The red dotted line represents the best-fitting regression after removing one
outlying data point (located at x= 1.9). The black dotted diagonal line corresponds to the predicted relation between
the two variables. See the online article for the color version of this figure.
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0.8449]). Such low values might be attributed to the low number of
trials used with the split-half method to compute the sensitivity
measures d

′
right and d

′
left.

Given that the change in sensitivity across conditions appears to
be related with overconfidence, we checked whether relaxing the
assumption of constant sensitivity across conditions would affect
our empirical test of the relationship between overconfidence bias
and conservative decision bias. More specifically, we used the val-
ues of sensitivity and criterion estimated separately for each cue con-
dition to compute again the observed criterion (M= 0.49, SD=
0.40) and the predicted criterion (M= 0.65, SD= 0.49). Still, we
found no evidence in support of a positive correlation between
these two measures at a 5% significance level (r= .17, p= .085
after we removed two outliers identified when plotting the data)
and found that the plots of the data look very similar (for comparison
see Figure S3 in the online supplemental materials), suggesting that
the variation in sensitivity observed in our data did not affect our
findings.

Model Comparison: Conservative Decision Bias Versus
Sensitivity Loss Mechanisms

We used a model comparison approach to evaluate which mecha-
nism better describes participants’ behavior: conservative decision
bias as hypothesized initially or sensitivity loss as suggested by our
exploratory analysis (see Table 2). In a series of probit mixed-effects
models (DeCarlo, 1998; Knoblauch & Maloney, 2012), we estimated
how participants’ responses (in the cueing session) were predicted on a
trial-by-trial basis by the stimulus and the cue presented in each trial,
and their interaction with participants’ raw overconfidence bias (calcu-
lated in the confidence session). Our simplest model (Model 0)
included no effect of overconfidence bias but only effects of stimulus

and predictive cue. Note that, in Table 2, the coefficients we obtain for
Model 0 correspond to the SDTestimates. In particular, the Intercept is
an estimate of the SDT criterion in the presence of a neutral cue, the
coefficient ofCuePred is an estimate of the shift in criterion in presence
of a predictive cue (as opposed to a neutral cue), and the coefficient of
Stimulus is an estimate of the sensitivity. In addition,Model 1 included
a two-way interaction CuePred×Overconf to allow overconfidence
bias to affect the criterion placement in presence of a predictive cue,
thereby implementing the conservative decision bias mechanism pre-
dicted initially, while Model 2 included a three-way interaction
CuePred× Stimulus×Overconf to allow overconfidence bias to affect
the sensitivity in presence of a predictive cue, thereby implementing
the sensitivity loss mechanism identified in our explanatory analysis.

In Model 1, the two-way interaction term CuePred×Overconf is
not significantly different from 0 thus overconfidence bias does not pro-
duce a significant difference in criterion placement in presence of a pre-
dictive cue. On the other hand, in Model 2, the three-way interaction
term is significantly different from 0 at a 5% significance level and
the sign is negative, bringing support to the novel hypothesis that over-
confidence bias reduces sensitivity in presence of a predictive cue.

Comparing nested models using likelihood ratio tests, we found
that including the modulation of sensitivity by overconfidence better
described the data (Model 2 vs. Model 0: χ2(5)= 16.886, p, .01;
and Model 2 vs. Model 1: χ2(3)= 12.551, p, .01). However,
including the modulation of the criterion by overconfidence did
not (Model 1 vs. Model 0: χ2(2)= 4.335, p= .115). Comparing
the Akaike Information Criteria (AIC), provides evidence, as well,
in favor of Model 2 (i.e., the “sensitivity loss” mechanism).
According to the raw AIC values, Model 2 is the preferred model
since it has the lowest AIC value (Model 0: AIC= 37,166.9,
Model 1: AIC= 37,166.57, Model 2: AIC= 37,160.02). In addi-
tion, comparing the Akaike weights, we found that Model 2 is

Figure 6
Overconfidence Bias and Sensitivity Loss

Note. (A) Sensitivity in the presence of a 75% valid cue and in the no-cue (i.e., neutral cue) conditions. (B) The
relation between sensitivity change (sensitivity 75% valid cue minus sensitivity neutral cue) and raw overconfidence
bias. The red line represents the best-fitting regression. In both panels, each dot is a participant (N= 69). The black
dotted line corresponds to the 45° line. See the online article for the color version of this figure.
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w2(AIC)
w1(AIC)

= 26.7 times more likely to be the best model in a

Kulback–Leibler sense than is the next best-fitting model (Model 1).

Discussion

Wedescribed a theoreticalmodel according towhich overconfidence
bias would induce conservative decision bias in response to unequal
base rates.Within the SDT framework, we provided a quantitativemea-
sure of overconfidence bias (i.e., the overestimation of one’s own sen-
sitivity to the sensory signal) and derived a predicted criterion
adjustment from this value. We then tested the proposed model using
a psychophysical task. Contrary to what was prescribed by the
model, overconfidence bias and conservative decision bias appeared
uncorrelated across participants. Our data prompted us to consider
that overconfidence bias may affect performance via a different mech-
anism. And, our final analysis suggested that overconfidence bias may
induce a reduction in sensitivity in response to unequal base rates.
Specifically, we found that overconfidence bias was positively corre-
lated with this sensitivity loss. Model comparison confirmed this
novel finding, that participants’ decisions are better explained by an
effect of overconfidence bias on sensitivity rather than on criterion
adjustment.
That overconfidence bias and conservative decision bias were

uncorrelated is consistent with a recent study (Ackermann &
Landy, 2015) that found that misestimating internal response vari-
ability (formally equivalent to our d

′
subj) in a visual detection task

is not the cause of conservative decision bias. Our findings are sim-
ilar but by collecting confidence data we provide a more direct test of

the hypothesized link. It should be emphasized that this absence of
correlation is not likely to be due to poor experimental measures of
the two quantities, as both have good internal consistency and were
clearly manifest in our data, in line with previous studies using per-
ceptual tasks reporting overconfidence bias (Baranski & Petrusic,
1994; Kubovy, 1977; Kvidera & Koutstaal, 2008; Mamassian,
2008; Massoni et al., 2014) and conservative decision bias
(Ackermann & Landy, 2015; Gorea & Sagi, 2000; Green &
Swets, 1966; Kubovy, 1977; Morales et al., 2015). Furthermore,
although we cannot verify in our data that overconfidence bias
remained stable across the two experimental sessions spaced 4
days apart, as we hypothesized in our empirical strategy, recent stud-
ies (Ais et al., 2016; Navajas et al., 2017) have found evidence to
support this assumption. However, we should also note that the pre-
sent study relied on several assumptions that have been questioned in
the literature. In particular, our estimation of conservative decision
bias was based on SDT with the assumption of Gaussian noise
(see Figure 2), and conservative decision bias observed in our data
could be the result of this assumption if it were incorrect
(Maloney & Thomas, 1991). In addition, we assumed that partici-
pants reported their true confidence level but, even though their con-
fidence report was incentivized, this might not have been the case as
some authors have pointed out that the mapping of internal evidence
into stated probabilities can suffer from biases (e.g., Fox & Clemen,
2005; Higham et al., 2016). Similarly, even though participants were
instructed to use the probabilistic information provided by the cues
to maximize their earnings, we cannot discard the possibility that the
mapping of the 75% probability into internal evidence might have
been distorted (e.g., Zhang & Maloney, 2012).

Table 2
Model Comparison

DV: Response

Model 0 Model 1 Model 2

Intercept 0.029 (0.024) −0.009 (0.030) −0.007 (0.030)
CuePred 0.498*** (0.046) 0.464*** (0.058) 0.465*** (0.058)
Stimulus 1.221*** (0.041) 1.221*** (0.041) 1.259*** (0.054)
Overconf −0.456* (0.217) −0.434* (0.220)
CuePred×Overconf 0.399 (0.426) 0.493 (0.424
CuePred× Stimulus −0.027 (0.040)
Stimulus×Overconf −0.038 (0.390)
CuePred× Stimulus×Overconf −0.671* (0.294)
Random effects Yes Yes Yes
Df 9 11 14
LL −18,574.5 −18,572.3 −18,566
AIC 37,166.9 37,166.57 37,160.02
w (AIC) 0.030 0.035 0.935
Nb observations 35,328 35,328 35,328
Nb participants 69 69 69

Note. Each model is a probit regression in which participants’ responses were predicted on a trial-by-trial basis. To
account for random variations across participants, all models included random criterion effects and random
sensitivity effects at the participant’s level. Response is coded as 1 if the participant responds “left” and 0 if he/she
responds “right.” Intercept is coded as −1. Stimulus is coded as −0.5 if the stimulus category is right and +0.5 if
the stimulus category is left. CuePred is coded as 1 for predictive cues and 0 for neutral cues. Note that to study the
effect of CuePred on participants’ responses, we grouped the trials in which a right or left cue was presented and
reversed the coding of the variables Response and Stimulus when a right cue was presented. Overconf is the
participant’s raw overconfidence bias measured in the confidence session (i.e., average confidence minus average
accuracy). Df is the degree of freedom. LL is the logarithm of the maximum likelihood. AIC is the Akaike
information criterion. w(AIC) is the rounded Akaike weight. Estimations are performed with the glmer function of
the R package lme4 (Bates et al., 2015). Standard errors are reported in parentheses.
p values: *p, .05. **p, .01. ***p, .001.
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We will now offer some tentative explanation for this correlation
between overconfidence bias and sensitivity loss in response to
unequal base rates. We acknowledge that this explanation is offered
a posteriori and needs to be evaluated against new data in future
work. Our explanation relies on two assumptions. Our first assump-
tion states that participants face a tradeoff between the effort they
deploy when they perform the task, which allows them to maintain
their sensitivity, and the satisfaction they obtain by producing correct
answers. When considering this tradeoff, they might evaluate that
there is a level of effort that maximizes the difference between
expected benefits and costs, and aim for this level. This idea is sim-
ilar to ideas of rational inattention in behavioral economics (Sims,
2003) and expected value of control in cognitive neuroscience
(Shenhav et al., 2013). More generally, this idea of self-regulation
is also put forward in the domain of education, to understand how
students allocate their resources when preparing for an exam (Son
&Metcalfe, 2000). In this scheme, participants may see the informa-
tion provided about the a priori probability of occurrence of the stim-
uli as an opportunity to maintain performance while deploying less
effort during the task, such that they would target a lower effort
(resulting in lower sensitivity). Indeed, an experiment showed that
participants’ subjective evaluations of effort decreasewhen diagnos-
tic cues are available to help them (Botzer et al., 2013). Our second
assumption simply states that overconfidence bias corresponds to
participants overestimating their probability of being correct when
performing the task. Although this assumption is uncontroversial,
it has some nontrivial effects when combined with the first assump-
tion. Specifically, since overconfident and well-calibrated partici-
pants would not evaluate their accuracy at the same level, they
will face different trade-offs, with distinct optimal solutions in
terms of effort allocation. Again, we insist that, since this explana-
tion is offered after the fact, other mechanisms could be formulated
to explain the loss of sensitivity observed in our data. More theoret-
ical work and new empirical data would be needed to uncover the
mechanism by which overconfidence bias and sensitivity loss are
related. Our findings thus bring new perspectives on the role of over-
confidence bias on the strategic allocation of resources in such
situation.
In sum, the SDT approach allowed us to break down partici-

pants’ suboptimal decisions in response to unequal base rate into
two components, namely a sensitivity loss and an under-
adjustment of criterion (i.e., conservative decision bias). And,
our data suggest that overconfidence bias leads to suboptimal deci-
sions via a sensitivity loss mechanism, independently of the under-
adjustment of criterion, which is also present but unrelated to over-
confidence in our data. Given that overconfidence bias and conser-
vative decision bias have been observed, although separately, for a
diverse range of participants with laboratory tasks using basic
visual decisions but also in experiments emulating real-world deci-
sions, we expect our finding (i.e., the absence of a link between
these two biases) to generalize to visual stimuli in which partici-
pants make similar discrimination tasks. A direct replication
would need to calibrate the difficulty of the task, measure confi-
dence in decision when stimuli are a priori equally likely to
occur, fully inform participants about the manipulation of the
base rate and incentivize them to be accurate. We have no reason
to believe that the results depend on other characteristics of the par-
ticipants, materials, or context. On the other hand, and to the best
of our knowledge, we lack prior direct evidence supporting our

finding regarding the link between overconfidence bias and change
in sensitivity and given the poor internal consistency of the mea-
sure of sensitivity change the correlation that we found might differ
in future replications. Finally, it must be noted that our sample size
was calculated to detect a correlation between overconfidence and
conservative decision bias with at least a medium effect size. If
instead one assumes that this correlation exists but might be very
small, then a larger sample size would be needed to demonstrate
it. In addition, such a small correlation (if it existed) would dimin-
ish the practical and theoretical importance of the mechanism link-
ing overconfidence to conservative decision bias. Thus, in any
case, further investigations are needed to examine other possible
sources of conservative decision bias.

References

Ackermann, J. F., & Landy, M. S. (2015). Suboptimal decision criteria are
predicted by subjectively weighted probabilities and rewards. Attention,
Perception, & Psychophysics, 77(2), 638–658. https://doi.org/10.3758/
s13414-014-0779-z

Ais, J., Zylberberg, A., Barttfeld, P., & Sigman, M. (2016). Individual con-
sistency in the accuracy and distribution of confidence judgments.
Cognition, 146, 377–386. https://doi.org/10.1016/j.cognition.2015.10
.006

Bahrami, B., Olsen, K., Latham, P. E., Roepstorff, A., Rees, G., & Frith, C. D.
(2010). Optimally interacting minds. Science, 329(5995), 1081–1085.
https://doi.org/10.1126/science.1185718

Baranski, J. V., & Petrusic, W. M. (1994). The calibration and resolution of
confidence in perceptual judgments. Perception & Psychophysics, 55(4),
412–428. https://doi.org/10.3758/BF03205299

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear
mixed-effects models using lme4. Journal of Statistical Software, 67(1),
1–48. https://doi.org/10.18637/jss.v067.i01

Becker, G. M., DeGroot, M. H., &Marschak, J. (1964). Measuring utility by
a single-response sequential method. Behavioral Science, 9(3), 226–232.
https://doi.org/10.1002/bs.3830090304

Botzer, A., Meyer, J., Bak, P., & Parmet, Y. (2010). User settings of cue
thresholds for binary categorization decisions. Journal of Experimental
Psychology: Applied, 16(1), 1–15. https://doi.org/10.1037/a0018758

Botzer, A., Meyer, J., & Parmet, Y. (2013). Mental effort in binary categori-
zation aided by binary cues. Journal of Experimental Psychology:
Applied, 19(1), 39–54. https://doi.org/10.1037/a0031625

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4),
433–436. https://doi.org/10.1163/156856897X00357

Broadway, J. M., & Engle, R. W. (2010). Validating running memory span:
Measurement of working memory capacity and links with fluid intelli-
gence. Behavior Research Methods, 42(2), 563–570. https://doi.org/10
.3758/BRM.42.2.563

Chi, C. F., & Drury, C. G. (1998). Do people choose an optimal response cri-
terion in an inspection task? IIE Transactions, 30(3), 257–266. https://
doi.org/10.1080/07408179808966456

Conway, A. R., Kane,M. J., Bunting,M. F., Hambrick, D. Z.,Wilhelm, O., &
Engle, R. W. (2005). Working memory span tasks: A methodological
review and user’s Guide. Psychonomic Bulletin & Review, 12(5), 769–
786. https://doi.org/10.3758/BF03196772

DeCarlo, L. T. (1998). Signal detection theory and generalized linear models.
Psychological Methods, 3(2), 186–205. https://doi.org/10.1037/1082-
989X.3.2.186

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic
information in a statistically optimal fashion. Nature, 415(6870), 429–
433. https://doi.org/10.1038/415429a

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A
flexible statistical power analysis program for the social, behavioral, and

HOW OVERCONFIDENCE BIAS INFLUENCES SUBOPTIMALITY 547

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



biomedical sciences. Behavior ResearchMethods, 39(2), 175–191. https://
doi.org/10.3758/BF03193146

Fox, C. R., & Clemen, R. T. (2005). Subjective probability assessment in
decision analysis: Partition dependence and bias toward the ignorance
prior. Management Science, 51(9), 1417–1432. https://doi.org/10.1287/
mnsc.1050.0409

Gorea, A., & Sagi, D. (2000). Failure to handle more than one internal rep-
resentation in visual detection tasks. Proceedings of the National
Academy of Sciences, 97(22), 12380–12384. https://doi.org/10.1073/
pnas.97.22.12380

Green, D.M., & Swets, J. A. (1966). Signal detection theory and psychophys-
ics (reprint ed.). Peninsula Publishing. ISBN 978-0-93214623-6.

Higham, P. A., Zawadzka, K., & Hanczakowski, M. (2016). Internal
mapping and its impact on measures of absolute and relative meta-
cognitive accuracy. In J. Dunlosky & S. Tauber (Eds.), The Oxford
handbook of metamemory (pp. 39–61). Oxford University Press.

JASP Team (2022). JASP (Version 0.16.1) [Computer software].
Kazak, A. E. (2018). Editorial: Journal article reporting standards. American
Psychologist, 73(1), 1–2. https://doi.org/10.1037/amp0000263

Knoblauch, K., &Maloney, L. T. (2012).Modeling psychophysical data in R
(Vol. 32). Springer.

Kubovy, M. (1977). A possible basis for conservatism in signal detection and
probabilistic categorization tasks. Perception & Psychophysics, 22(3),
277–281. https://doi.org/10.3758/BF03199690

Kvidera, S., & Koutstaal, W. (2008). Confidence and decision type under
matched stimulus conditions: Overconfidence in perceptual but not con-
ceptual decisions. Journal of Behavioral Decision Making, 21(3), 253–
281. https://doi.org/10.1002/bdm.587

Levitt, H. C. C. H. (1971). Transformed up-down methods in psychoacous-
tics. The Journal of the Acoustical Society of America, 49(2B), 467–477.
https://doi.org/10.1121/1.1912375

Maloney, L. T., & Thomas, E. A. (1991). Distributional assumptions and
observed conservatism in the theory of signal detectability. Journal of
Mathematical Psychology, 35(4), 443–470. https://doi.org/10.1016/
0022-2496(91)90043-S

Mamassian, P. (2008). Overconfidence in an objective anticipatory motor
task. Psychological Science, 19(6), 601–606. https://doi.org/10.1111/j
.1467-9280.2008.02129.x

Massoni, S., Gajdos, T., & Vergnaud, J. C. (2014). Confidence measurement
in the light of signal detection theory. Frontiers in Psychology, 5, Article
1455. https://doi.org/10.3389/fpsyg.2014.01455

The Math Works. (2014). MATLAB (Version 2014a) [Computer software].
Morales, J., Solovey, G., Maniscalco, B., Rahnev, D., de Lange, F. P., &
Lau, H. (2015). Low attention impairs optimal incorporation of prior
knowledge in perceptual decisions. Attention, Perception, &
Psychophysics, 77(6), 2021–2036. https://doi.org/10.3758/s13414-015-
0897-2

Murrell, G. A. (1977). Combination of evidence in a probabilistic visual
search and detection task. Organizational Behavior and Human
Performance, 18(1), 3–18. https://doi.org/10.1016/0030-5073(77)90015-0

Navajas, J., Hindocha, C., Foda, H., Keramati,M., Latham, P. E.,&Bahrami, B.
(2017). The idiosyncratic nature of confidence. Nature Human Behaviour,
1(11), 810–818. https://doi.org/10.1038/s41562-017-0215-1

Parsons, S., Kruijt, A. W., & Fox, E. (2019). Psychological science needs a
standard practice of reporting the reliability of cognitive–behavioral mea-
surements. Advances in Methods and Practices in Psychological Science,
2(4), 378–395. https://doi.org/10.1177/2515245919879695

Pollack, I., Johnson, L. B., & Knaff, P. R. (1959). Running memory span.
Journal of Experimental Psychology, 57(3), 137–146. https://doi.org/10
.1037/h0046137

R Core Team. (2018). R: A language and environment for statistical comput-
ing [Computer software].

Rahnev, D., & Denison, R. N. (2018). Suboptimality in perceptual decision
making. Behavioral and Brain Sciences, 41, Article e223, 1–66, https://
doi.org/10.1017/S0140525X18000936

Rahnev, D., Lau, H., & De Lange, F. P. (2011). Prior expectation modulates
the interaction between sensory and prefrontal regions in the human brain.
Journal of Neuroscience, 31(29), 10741–10748. https://doi.org/10.1523/
JNEUROSCI.1478-11.2011

Shenhav, A., Botvinick, M.M., &Cohen, J. D. (2013). The expected value of
control: An integrative theory of anterior cingulate cortex function.
Neuron, 79(2), 217–240. https://doi.org/10.1016/j.neuron.2013.07.007

Sims, C. A. (2003). Implications of rational inattention. Journal of Monetary
Economics, 50(3), 665–690.

Son, L. K., & Metcalfe, J. (2000). Metacognitive and control strategies in
study-time allocation. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 26(1), 204–221. https://doi.org/10.1037/0278-
7393.26.1.204

Ulehla, Z. J. (1966). Optimality of perceptual decision criteria. Journal of
Experimental Psychology, 71(4), 564–569. https://doi.org/10.1037/
h0023007

Wang, L., Jamieson, G. A., &Hollands, J. G. (2009). Trust and reliance on an
automated combat identification system. Human Factors, 51(3), 281–291.
https://doi.org/10.1177/0018720809338842

Yang, T., & Shadlen, M. N. (2007). Probabilistic reasoning by neurons.
Nature, 447(7148), 1075–1080. https://doi.org/10.1038/nature05852

Zhang, H., & Maloney, L. T. (2012). Ubiquitous log odds: A common rep-
resentation of probability and frequency distortion in perception, action,
and cognition. Frontiers in Neuroscience, 6, Article 1. https://doi.org/10
.3389/fnins.2012.00001

Received January 31, 2022
Revision received October 19, 2022

Accepted November 4, 2022 ▪

HAINGUERLOT, GAJDOS, VERGNAUD, AND DE GARDELLE548

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

View publication stats


