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THEORETICAL REVIEW

ELF: A new measure of response capture
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Abstract Response capture is a widespread and extensively
studied phenomenon, in particular in decision tasks involv-
ing response conflict. Its intensity is routinely quantified
by conditional accuracy function (CAF). We argue that this
method might be misleading, and propose an alternative
approach, the error location function (ELF). While CAF
provides the error rate by bins of reaction time (RT), ELF
represents the share of total errors below each quantile of
RT. We derive from ELF an index of response capture, the
error location index (ELI), which represents the area below
the ELF. Using simulations of computational models, we
show that ELF and ELI specifically quantify variations in
response capture. Finally, we illustrate the usefulness of
ELF and ELI through experimental data and show that ELF
and CAF can yield to contradictory conclusions.

Keywords Computational models · Reaction time
analysis · Response time models · Cognitive control and
automaticity

Introduction

One sometimes makes fast decisions before carefully pro-
cessing the decision at hand, either on the basis of a strong
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prior belief, or under the influence of a very salient, though
irrelevant, stimulus. Such choices typically generate fast errors,
because the decision is not based on the relevant informa-
tion. Instead, the decision is somehow captured by irrele-
vant cues or beliefs, which yield to refer to such situations
as response captures (van den Wildenberg et al. 2010).

Experimentally, response capture has been extensively
studied in reaction time (RT) paradigms where participants
face conflicting stimuli: a relevant one, which determines
the answer they should provide, and some irrelevant but
salient ones that trigger an automatic response (Stroop,
1935; Eriksen & Eriksen, 1974; Simon, 1990). For instance,
in the Simon task, the participants are instructed to respond
as fast and as accurately as possible by pressing on a left-
or a right-hand key according to a non-spatial attribute of
a stimulus presented either on the left or on the right of
a fixation point. Performance expressed both in terms of
error rate and mean RT is better when the required response
corresponds spatially to the irrelevant stimulus location
(ipsilateral associations) than when it does not correspond
(contralateral associations). However, it is important to note
that response captures are not limited to conflict tasks. Fast
errors are also observed in simple choice situations where
individuals should answer under time pressure (Luce, 1986),
and a substantial effort has been made to account for them
in computational models (Ratcliff & McKoon, 2008).

Because of its ubiquity, it is important to have a behav-
ioral measure of the intensity of response capture that does
not depend on a specific cognitive model. It has been argued
that response capture could be measured by the proportion
of errors among fast responses (Ridderinkhof, 2002; van den
Wildenberg et al. 2010). Accordingly, the conditional accu-
racy function (CAF), which gives that accuracy rate by bins
(bounded by quantiles) of RT (Luce, 1986), is routinely used
to measure response capture (Gratton et al. 1988; Ulrich
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et al. 2015; White, Brown, & Ratcliff, 2012).1 More pre-
cisely, one usually use either the slope of the first segment of
the CAF (Ridderinkhof, 2002) or its first point, which rep-
resents the accuracy rate in the first bin of RT (Wylie et al.
2010, 2012; van Wouwe et al. 2016).

In this article, we propose an alternative measure of
response capture. The key idea is to distinguish between the
two following statements: (i) “the error rate among the p%
fastest responses are x%” and (ii) “y% of the errors are con-
tained in the p% fastest responses”. The first statement is
about the accuracy rate below the p-quantile of RT, and this
information is provided by CAF. The second one is about
the proportion of errors below the first p-quantile of RT, and
cannot be deduced from CAF. We argue that response cap-
ture is better described by the second statement than by the
first. This yields us to propose an alternative to the CAF,
which we call the error location function (ELF). Impor-
tantly, ELF allows defining a very natural index of response
capture (error location index, ELI). In the next section, we
introduce ELF and ELI in detail. Then we illustrate their
significance through numerical simulation of computational
decision models. Finally, we illustrate the usefulness of ELF
and ELI through experimental data and show that ELF and
CAF can yield to contradictory conclusions.

Error location function (ELF) and error location
index (ELI)

We illustrate the logic behind the ELF through a distribu-
tion analysis of RT in a conflict task such as the Simon task.
However, the following arguments could be easily general-
ized to other situations. Consider the case of incompatible
trials in a Simon task. In such trials, a response capture
would be a fast response triggered by the irrelevant stimulus
location. On the other hand, slow errors would reflect some
other cognitive process, for instance perceptual errors. In
this context, a stronger response capture should increase the
number of fast errors, without impacting slow errors. Thus,
the intensity of response capture is characterized by the
proportion of errors contained in the first bin of RT. How-
ever, this is not what CAF measures: instead, it provides a
measure of the accuracy rate by bin of RT.

The distinction between these two approaches is illus-
trated by the following example. Assume that a subject
performs 100 trials of a task, in three different conditions, A,
B, and C. Let the RT be divided into five bins. Assume that
in condition A, one observes four errors in the first bin, and
two errors in each other ones, whereas one observes eight
errors in the first bin, and four errors in each other ones in

1CAF thus plot the accuracy rate within each bin of RT against the
mean RT of each bin.

condition B. Finally, in condition C, the subject only makes
two errors in the first bin. Such a situation would yield to the
CAF curves reported in the left panel of Fig. 1. The slope
of the first segment of the CAF curve is steeper in condi-
tion B than in condition A. Thus, on this basis, one could be
tempted to conclude that response capture is higher in con-
dition B than in condition A. On the other hand, these slopes
are exactly the same in conditions A and C. Since the CAF
curve corresponding to condition C is above that of con-
dition A, one might be tempted to conclude that response
capture is lower in condition C than in condition A.

However, a closer look leads to question this conclusion.
While it is true that the subject makes twice as much errors
in condition B than in condition A, the error RTs distribu-
tion is exactly the same in both conditions: namely, 1/3 of
the errors is located in the first bin, and 1/6 in each other
bins. In other words, what we observe when comparing con-
ditions A and B is a homogeneous increase of all errors, fast
and slow; but, strictly speaking, a stronger response cap-
ture should only increase the number of fast errors, thereby
increasing the proportion of fast answers among errors. This
is exactly what happens in condition C: there are only two
errors, but both are contained in the first RT bin. One could
thus suspect that response capture is stronger in condition C
than in conditions A and B, while the cognitive mechanisms
underlying the difference between conditions A and B are
not, or at least not exclusively, related to response capture.

This demonstrates the need to design a tool that specifi-
cally measures the intensity of response capture. We suggest
to do so by taking literally the idea that response capture can
be characterized by the proportion of fast answers among
errors. A natural way to implement this idea would be to
build relative CAF (RCAF) instead of CAF, by replacing
the error rate within each bin by the proportion of all errors
that are contained in each bin.2 However, RCAF still rely
on a discretization of the data. The number of bins is some-
what arbitrary, and can influence the outcome. Moreover, it
is desirable to get an index of response capture, and it is not
obvious how it could be derived from RCAF. This yields
us to introduce the error location function (ELF). The ELF
represents the proportion of errors located below each quan-
tile p of the overall RT distribution. Formally, let F and
G denote the cumulative distribution function of all trials
and errors, respectively. Let F−1 be the quantile function of
F , defined as F−1(p) = inf {x ∈ R |F(x) ≥ p }. The ELF
function is defined by:

ELF(F,G)(p) = G(F−1(p)), p ∈ [0, 1]. (1)

Note that the ELF is increasing, and satisfies
ELF(F,G)(0) = 0 and ELF(F,G)(1) = 1. The basic
idea of ELF is thus to use the RT distribution of all trials

2We thank Andrew Heathcote for this suggestion.
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Fig. 1 CAF curves (left panel) corresponding to the three hypotheti-
cal conditions A, B, and C. The slope of the first segment is steeper in
condition B than in condition A, and is identical in conditions A and
C. However, error RTs distributions are exactly the same in conditions

A and B, while all errors are concentrated in the first bin in condition
C. The ELF curves (right panel) are identical in conditions A and B,
but that of condition C is higher. See the text for a detailed description
of the ELI index reported in right panel

(irrespective of the accuracy) as a reference against the RT
distribution of errors. In other words, what ELF measures is
the relative RT distribution of errors with respect to overall
RT. The choice of this reference is somewhat arbitrary, and
was made to stick as closely as possible to the logic behind
CAFs. Another natural possibility would be to use the RT
distribution of correct trials. This would yield to replace
F−1 by the quantile function of correct RTs. All what
follows can easily be adapted to this alternative definition.
Admittedly, this choice is largely a matter of taste. This
being said, both definitions yield to very similar results and
interpretations.

The graph of ELF (the ELF curve) has some interesting
properties. First observe that it can equivalently be plotted in
the (p,G(F−1(p))) space (Fig. 2, left panel), or as a para-
metric curve in the (F (t),G(t)) space (Fig. 2, right panel).
In the first case, one reads on the vertical axis the proportion
of errors that are faster than the p% faster responses (correct
and incorrect). In the second case, each point of the curve
provides the proportion of overall (on the horizontal axis)
and incorrect (on the vertical axis) responses faster than a
given RT. This representation has some obvious similarities
with the classical ROC curve.

The ELF curve coincides with the first diagonal if and
only if G = F , i.e., error RTs are exactly distributed
as RT of all trials. In this case, the corresponding CAF
curve would be horizontal.3 On the other hand, an ELF
curve above the first diagonal indicates that most errors
are concentrated among fast responses. Conversely, an ELF
curve below the first diagonal indicates that most errors are

3Note that, because of the discretization involved in the computation
of CAF, the converse is not always true: CAF are invariant to changes
of the distribution of error RTs within bins.

concentrated among slow responses. Thus, one would typi-
cally expect the ELF curve to be above the diagonal when
subjects exhibit some degree of response capture, as in the
case for incompatible trials in conflict tasks. More gener-
ally, a “higher” ELF curve indicates a higher concentration
of errors among fast responses. The right panel of Fig. 1
represents the ELF curves for the three conditions A, B,
and C. As expected, these curves are essentially identical
for conditions A and B, reflecting that the distribution of
errors is exactly the same in these two conditions. By con-
trast, the ELF curve corresponding to condition C is higher,
which reflects the fact that errors are exclusively concen-
trated among fast RT, thereby indicating a strong response
capture.

This suggests taking the area below the ELF curve as an
index of the strength of response capture. This yields us to
define the error location index (ELI) as:

ELI (F,G) =
∫ 1

0
G(F−1(p))dp. (2)

The ELI is easy to interpret, by observing that it can be
rewritten as ELI (F,G) =

∫ +∞
0 G(t)f (t)dt , where f is

the density function of correct RTs. Thus, ELI can be inter-
preted as the expectation that a uniformly drawn incorrect
response is faster than a uniformly drawn (correct or incor-
rect) trial. Thus, if ELI = 1, all errors are concentrated
among the fastest trials, which corresponds to a very strong
response capture. On the other hand, if ELI = 0, all
errors are concentrated among the slowest trials, which is
the converse of response capture. Finally, when errors RT
are evenly distributed among all RT, there is no response
capture andELI = 1

2 . Observe that the converse is not true:
ELI = 1

2 could correspond to an ELF curve that crosses the
first diagonal. It would be the case, for instance, if errors are
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Fig. 2 Example of an ELF curve. Left panel: the curve is rep-
resented in the (p,G(F−1(p)) space. We have, for instance:
ELF(F,G)(0.6) = 0.9. This means that 90% of the errors are con-
centrated among the 60% faster answers. Right panel: the curve is

represented in the (F (t),G(t)) space. Each point of the curve gives the
proportion of all responses (horizontal axis) and errors (vertical axis)
faster than a given RT

exclusively concentrated among both fastest responses (due
to response capture) and slowest ones (due to some other
cognitive mechanism influencing error RTs). In such a case,
interpreting ELF and ELI as measuring response capture
might be misleading. This comes as the cost of the non-
parametric nature of ELF and ELI: because they avoid any
specific assumption about the mechanisms generating RTs,
they cannot disentangle response capture from other fac-
tors influencing the distribution of error RTs. While, ceteris
paribus, a stronger response capture necessarily generates
a higher ELI, the converse is not true. As any other non-
parametric measures, ELF and ELI should thus be used
with caution, and related to other measures within a specific
theoretical framework.

One convenient feature of the CAF function is that it
allows for simple group summaries, by simple averaging
across subjects. Fortunately, ELF has a similar property.
Assume there are n subjects, and let Fi and Gi denote the
cumulative distribution function of all trials and errors of
subject i, respectively. By definition, subject i’s ELF curve
is equal to ELFi(p) = Gi(F

−1
i (p)). Let’s define the ELF

group function as

ELFgroup(p) =
1
n

n∑

i=1

ELFi(p).

It is easy to plot ELFgroup, as it is simply the mean of the
individualELF curves. Now letELIgroup be the area under
the group ELF curve. We then have:

ELIgroup =
∫ 1

0
ELFgroup(p)dp =

∫ 1

0

1
n

n∑

i=1

ELFi(p)dp

= 1
n

n∑

i=1

∫ 1

0
ELFi(p)dp = 1

n

n∑

i=1

ELIi.

Thus, the group ELI, which is the area under the group ELF
curve, is simply the mean of individual ELIs. We use this
method in Section “Application: color saturation manipula-
tion in an Eriksen task”.

R codes implementing ELF and ELI are provided in
the Appendix. It should be noted for empirical appli-
cations that, because ELF and ELI strongly rely on
cumulative distribution functions of correct responses and
errors, one needs to ensure that there are enough data for
these empirical cumulative distributions to be meaning-
ful. One way to cope with this issue consists of comput-
ing confidence intervals for ELI using a standard boot-
strap procedure. One should refrain from using ELI if
these confidence intervals are too large. We apply this
method in Section “Application: color saturation manipula-
tion in an Eriksen task” when illustrating ELF and ELI with
actual data.
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Relation to computational models

We now illustrate the use of ELF and ELI through the si-
mulation of computational models of decision making. The
rationale behind this exercise is the following. Computa-
tional models are generally designed to reflect to some
extent some cognitive processes. Their parameters can thus
be interpreted as measuring some characteristics of cogni-
tive processes. One can therefore use these models as bench-
marks, and observe for instance how specifically ELF and
ELI react to changes of parameters that are thought to in-
fluence response capture.

We start with the popular drift diffusion model (DDM,
Ratcliff 1978). This model assumes that evidence in favor of
a given option in a two-alternative forced choice is accumu-
lated, and that a choice is made when accumulated evidence
reaches a given threshold. Formally, this accumulation pro-
cess is modeled by a stochastic diffusion process. The drift
rate of this process (µc) depends on the quality of sensory
information, subject’s attention, and discrimination ability.
The threshold (bfor a correct choice, and −bfor an incor-
rect one, conditional on a given alternative) depends on the
speed–accuracy trade-off made by the subject. Finally, the
starting point of the accumulation process (set here to zero)
depends on the prior bias in favor of a choice alternative.
On top of this process of evidence accumulation, the DDM
includes a random non-decision time. We do not include
this component into account for the sake of clarity. We sim-
ulate response data using the DDM model with three sets
of parameters based on Matzke & Wagenmakers’s (2009)
survey of parameter values estimated in empirical studies
(see Table 1). The model is simulated in seconds, with a
diffusion coefficient equal to 1. The first set of parame-
ters is our baseline condition. The second set corresponds
to a “low threshold” condition, in which the upper thresh-
old bis reduced from 0.5 to 0.4. An important property of
the basic DDM model is that the RT distribution of errors
and correct trials are identical. Therefore, this model can-
not account for fast or slow errors. Laming (1968) showed
that one can predict errors to be faster than correct responses
by introducing inter-trial variability in the starting point of

Table 1 Parameters used in the simulations of the DDM model, with
decision threshold b, drift µc, and variability of the starting point sz.
The number of trials in each simulation is ntrials

b µc sz ntrials

Baseline .5 2 0 80000

Low threshold 0.4 2 0 80000

High variability 0.5 2 1 80000

the evidence accumulation process. We thus consider a third
condition (“high variability”), adding inter-trial variability
in the starting point of the evidence accumulation process
(uniformly distributed with mean 0 and range 1; see Ratcliff
and Rouder (1998)). The CAF, ELF curves, and ELI indices
corresponding to these three conditions are shown in Fig. 3.

We can observe that in both the high variability and low
threshold conditions, the CAF curves are different from the
baseline. Focusing on the first point of the CAF curves,
one might be tempted to conclude that response capture is
stronger in both the high variability and low threshold con-
ditions than in the baseline condition. However, we know
that RT distributions of errors and correct responses are
actually the same in the low threshold condition. The ELF
curves, on the other hand, tell a totally different story: they
are identical in the baseline and low threshold conditions,
and higher in the high variability condition. These observa-
tions are confirmed by the values of the ELI, reported in
the right panel of Fig. 3. This is of course consistent with
the fact that the variability of the starting point of the DDM
(and not the threshold of the decision rule) generates faster
errors than correct responses. Incidentally, this analysis sug-
gests that the ELI might be a behavioral counterpart of the
variability of the starting point of the DDM.

While very versatile, it has been demonstrated that the
standard DDM cannot account for the pattern of data
observed in conflict tasks, namely faster errors than correct
responses in incompatible trials only (e.g., Hübner, Stein-
hauser, and Lehle, 2010; White, Ratcliff, and Starns, 2011).
Recent efforts have been made to fill this gap. The diffu-
sion model for conflict tasks (DMC) proposed by Ulrich
et al. (2015) is particularly interesting, insofar as it is a
natural extension of the DDM, with parameters that can
naturally be related to response capture and control. In a
nutshell, the DMC is an extension of the DDM, where the
rate of evidence accumulation is allowed to vary with time.
More precisely, the decision process is assumed to be the
sum of two diffusion processes: a controlled process, with
a constant drift (µc), and an automatic process, with a drift
that first increases, and then progressively vanishes. For-
mally, dynamics of the variable drift rate are described by
a rescaled Gamma density function, with a peak amplitude
A, a shape parameter α and a characteristic time τ .4 The
peak amplitude (A) is related to the strength of the auto-
matic activation that triggers response capture. The shape
and characteristic time are related to the efficiency of the

4The expected mean of the variable drift rate at time t is thus given by:

Ae− t
τ

[
te

(α−1)τ

]α−1
.
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Fig. 3 Simulated CAF and ELF curves for the DDM model

suppression of the automatic activation. Suppression effi-
ciency can be quantified by the time between the peak
latency of the automatic activation tmax = τ (α − 1) and
its 90th percentile (t90). We simulate data from the DMC
with four sets of parameters (see Table 2) chosen in a plau-
sible range (Ulrich et al. 2015; White, Servant, & Logan,
2017). The model is simulated in seconds, with a diffusion
coefficient equal to 1.

The first set of parameters corresponds to our baseline.
In the strong automatic activation condition, the peak of
the automatic activation is set at 0.35, instead of 0.2 in
the baseline condition. Therefore, the automatic activation
has a larger influence on the response. In the low thresh-
old condition, the upper decision bound is reduced from 0.6
(baseline condition) to 0.5. As in the DDM, this corresponds
to a change in the speed–accuracy trade-off, with faster but
less accurate answers. Finally, in the high control condition,
the suppression of the automatic activation is more effi-
cient (t90 − tmax = 0.14 seconds instead of 0.30 seconds
in the baseline condition). The CAF and ELF curves corre-
sponding to these four conditions are shown in Fig. 4.

The slopes of the initial segments of the CAF in the
strong automatic and low threshold conditions are very sim-
ilar. By contrast, the ELF curve is much higher in the strong
automatic activation condition than in the low threshold
condition. This suggests that the ELF curve actually cap-
tures something related to automatic response capture that
is not measured by CAF curves. These results are reflected
in the ELI, reported in the right panel of Fig. 4.5

5One might be tempted, in view of the above results, to use ELF to
assess model fit. This would not be a good idea, as ELF totally neglects
some important information, such as the overall error rate.

Application: color saturation manipulation
in an Eriksen task

Servant, Montagnini, and Burle (2014) studied the influence
of the salience of the target in an Eriksen task (experiment
1). We use their data to illustrate the usefulness of ELF and
ELI.We show that ELF and CAF yield contradictory results.
Incidentally, we also show that the results derived from CAF
curves are sensitive to the choice of the number of bins.

All analyses are performed in R (version 3.2.4 (R Core
Team, 2016)). Because CAF slopes and first bins, as well
as ELI indices, are typically not normally distributed, their
means across conditions are compared with permutation
tests.

Experimental procedure

A brief overview of critical details about participants and
experimental procedure used by Servant, Montagnini, and
Burle (2014, experiment 1) is recounted below. Twelve stu-
dents participated in the experiment. Participants had to

Table 2 Parameters used in the simulations of the DMCmodel, withb
the decision threshold, µc the drift of the controlled process, A, τ and
α the peak amplitude, shape and characteristic time of the automatic
process. The number of trials in each simulation is ntrials

b µc A α τ ntrials t90 − tmax

Baseline 0.6 2.3 0.2 2 0.08 80000 0.30

Strong automatic
activation

0.6 2.3 0.35 2 0.08 80000 0.30

Low threshold 0.5 2.3 0.2 2 0.08 80000 0.30

High control 0.60 2.3 0.2 2.5 0.53 80000 0.14
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Fig. 4 Simulated CAF and ELF curves for the DMC model

discriminate the color of a central target circle while ignor-
ing the color of a pair of irrelevant flanking circles. The
color saturation of the target circle was manipulated using
six levels (15, 25, 35, 45, 60, and 80%). Participants per-
formed 24 blocks of 96 trials in a single session. Half of
the trials were congruent (same color for target and distrac-
tors), and the other half were incongruent (different colors
for targets and distractors). First-order sequential effects
were controlled by a pseudo-randomization procedure, and
color saturation levels were balanced across sequences of
trials. Participants were instructed to answer as quickly and
accurately as possible.

Analysis of response capture with CAF

We split incongruent trials into low (15, 25, and 35%) and
high (45, 60, and 80%) saturation levels, and we investigated
the impact of saturation level (high versus low) on response
capture. Responses were faster in the high saturation
condition for errors (mean RT = 370 ms, SD = 103 ms;
low saturation condition: mean RT = 431 ms, SD = 154 ms;

p < 0.001) and correct responses (mean RT = 436 ms, SD
= 119 ms; low saturation condition: mean RT = 468 ms, SD
= 128 ms; p < 0.001). In addition, accuracy was higher
in the high saturation condition (mean accuracy = 0.88, SD
= 0.32; low saturation: mean accuracy = 0.77, SD = 0.32;
p < 0.001). On average, each participant made 67.6 errors
(SD = 38, min = 5, max = 121) in the high saturation con-
dition, and 135 errors in the low saturation condition (SD =
84.2, min = 45, max = 278).

We first computed conventional CAF curve for each con-
dition (high and low saturation levels), using five bins. The
left panel of Fig. 5 shows these CAF curves averaged across
participants. We found that the initial slope of the CAF was
significantly lower for high saturation (mean = 1.62, SD =
1.25) than low saturation levels (mean = 2.14, SD = 1.03;
p = 0.03). In addition, the accuracy rate in the first bin was
significantly larger in the high saturation condition (mean =
0.76, SD = 0.15; low saturation: mean = 0.61, SD = 0.23,
p < 0.001).

Thus, CAF analyses suggest that response capture is
stronger with low saturation levels. It is worth noting that
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Fig. 5 Average CAF and ELF curves for the incongruent trials in the low and high saturation conditions
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these results are sensitive to the choice of the number of bins
used to compute the CAF curve. If one uses ten bins instead
of five, the slopes of the CAF curves are not significantly
different (high saturation: mean = 2.14, SD = 2.12; low satu-
ration: mean = 3.38, SD = 2.23; p = 0.4), while the accuracy
rate of the first bin remains significantly higher in the high
saturation condition (high saturation: mean = 0.70, SD =
0.17; low saturation: mean = 0.53, SD = 0.25; p = 0.004).

Analysis of response capture with ELF

We now turn to ELF and ELI. We observed that all par-
ticipants made at least five errors in each condition. We
implemented a bootstrap procedure to evaluate whether this
is enough to provide meaningful ELI. We bootstrapped
9999 times participants RTs in each saturation condition,
and computed the mean ELI across participants for each
bootstrap sample. We then computed the mean and 95%
confidence intervals of these indices. Given that these con-
fidence intervals seem reasonably small, we compared ELI
indices in the low and high saturation levels conditions. We
found that ELI was larger for the high saturation condi-
tion (high saturation: mean = 0.66, CI = [0.63, 0.70]; low
saturation: mean = 0.57, CI = [0.55, 0.59], p = 0.03).

Thus, ELI shows that errors are less concentrated among
fast responses when saturation decreases, suggesting a
lower amount of response capture. This contradicts the
conclusion drawn from CAF.

Conclusions

Conditional accuracy function (CAF) is routinely used as
a way to quantify the strength of response capture, partic-
ularly in times of response conflicts. We argued that this
could be misleading, and probably results from a confusion
between two distinct concepts: (i) the accuracy rate within
the first RT bin, which can be measured by CAF but is not
specifically related to response capture, and (ii) the pro-
portion of errors that are faster than a given quantile of the
overall RT distribution, which is a natural measure of the
strength of response capture, but cannot be deduced from
CAF.

We thus proposed an alternative way to represent RT dis-
tributions, namely the error location function (ELF), which
precisely represents the RT distribution of errors compared
to the RT distribution of all trials. Importantly, ELF does
not rely on a discretization of the data. We further showed
that the area under the ELF curve provides a natural index
of error location. This index, termed error location index
(ELI) to ELF can be easily interpreted as the expectation
of the proportion of incorrect responses faster than a ran-
domly (according to the uniform distribution) chosen trial.

It should be noted for empirical applications that because
ELF and ELI strongly rely on cumulative distribution func-
tions of correct responses and errors, one needs to make sure
that there are enough data for these empirical cumulative
distributions to be meaningful.

Using simulation of computational models, we illustrated
the scope of ELF and ELI. The results of our simula-
tions show that ELF can appropriately distinguish situations
where there is a strong response capture, while a more con-
ventional interpretation of CAF would yield to incorrect
conclusions. We applied ELF method to real data from Ser-
vant et al. (2014), who studied the influence of the salience
of the target in an Eriksen task. We show that ELF and CAF
yield to opposite conclusions. We also show that the results
derived from CAF curves are sensitive to the choice of the
number of bins. We thus hope that ELF and ELI, which are
both conceptually easy to understand and computationally
easy to implement, will prove to be helpful for scientists
interested in the measure of the strength of response capture.
As a note of caution, we remind the reader that ELF and
ELI are non-parametric measures, and should be interpreted
in combination with other measures derived from specific
theoretical frameworks.

Acknowledgements We thank Andrew Heathcote and two anony-
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Appendix: R codes for ELF and ELI

The code we provide to compute ELF crucially relies on
the quantile function. This function allows to choose the
method used to compute quantiles among the nine methods
presented in Hyndman and Fan (1996). The scripts below
could be adapted accordingly.

# Compute ELF
e l f f unc t i on ( rt , a c cu r a cy )

p = ( 1 : l eng th ( r t ) ) / l eng th ( r t )
e r r o r s r t [ a c cu r a cy ==0]
c o r r e c t r t [ a c cu r a cy ==1]

i f ( l eng th ( c o r r e c t ) == l eng th ( r t ) ) L NA
e l s e
c e r r o r e cd f ( e r r o r s )
L c e r r o r ( quan t i l e ( rt , p r ob s = p ) )
re turn (L )

# Compute ELI
e l i f unc t i on (L )

n l eng th (L )
V (1 / n ) sum (L )
re turn (V)
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